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Complex optical networks containing one or more gain sections are investigated, and the evidence
of lasing action is reported; the emission spectrum reflects the topological disorder induced by the
connections. A theoretical description compares well with the measurements, mapping the networks to
directed graphs and showing the analogies with the problem of quantum chaos on graphs. We show that the
interplay of chaotic diffusion and amplification leads to an emission statistic with characteristic heavy tails:
for different topologies, an unprecedented experimental demonstration of Lévy statistics expected for
random lasers is here provided for a continuous-wave pumped system. This result is also supported by a
Monte Carlo simulation based on the ray random walk on the graph.
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Pursuing laboratory investigations of complex dynamics
on networks is a topic of growing interest motivated, e.g.,
by the study of power grids and their failures [1], the role of
topology on synchronization [2], or other nonlinear effects
[3,4]. In this Letter, we present a novel scheme: the lasing
network (LANER). It consists of a complex active optical
network, whose connectivity induces a form of topological
disorder and can display laser action. Besides its intrinsic
interest, the system may be regarded as an optical imple-
mentation of a dynamical system on a graph [5]. The great
majority of lasers share the same structure with a single
gain section in a simple linear or ring cavity, supporting
regular sets of optical modes [6]. A somehow opposite case
is the random laser, where the propagation of rays in a
disordered gain medium leads to light amplification [7,8].
The LANER generalizes to strongly connected multiple
gain setups and could also be considered as a discrete
random laser with a controllable complexity. The robust-
ness and flexibility of the apparatus permit us to explore
different configurations by an easy rearrangement of the
components; the stability of the setup allows for detailed
statistical analysis as well.
The network we consider is built with Ns couplers

connected by Nl single-mode fibers, some of them (active)
capable to provide optical amplification via stimulated
emission. The couplers are standard optical power splitters
or other commercially available components such as
circulators, etc. Isolators can also be used to select a
propagation direction; in the present Letter, we will deal
only with directed active fibers and 2 × 2 (four ports)
lossless couplers with no open ports so that Nl ¼ 2Ns.
Schemes of the simplest topologies with Ns ¼ 1 and 2
realized experimentally are depicted in Fig. 1 (curves with
white background). Alongside, their representation as
equivalent directed graphs is given (see below).

For the theoretical description, we denote by Lj the
lengths of the Nl fiber segments and by gj the respective
gain (gj > 1) or loss (gj < 1) factors. The observables are
the envelopes of the longitudinal optical field propagating
in opposite directions along each fiber. Within a linear
description, where nonlinear dispersion, gain saturation,
etc. are disregarded, the optical spectrum is determined
through the 2Nl × 2Nl network matrix N ¼ PS in terms of
the propagation matrix P (which contains the metric and
topological information) and the wave splitting at the
couplers through the unitary scattering matrix S (see
Supplemental Material [9]). Assuming that the field
through the link j is multiplied by a factor Gj ¼ gjeiKLj,
the allowed complex wave numbers K (poles) are deter-
mined by the condition det ½NðKÞ − I� ¼ 1, where I is the
2Nl × 2Nl identity matrix. This generalizes the usual
mode-matching and threshold conditions for a laser in
the case of linear gains and no cross phase-gain coupling.
Its analytic solution is usually unfeasible even for the
simplest networks, but it can be solved numerically.
A representation of the LANER in terms of graphs can

be introduced as well by setting all the nonzero elements of
the matrix N to 1 and defining the result as the adjacency
matrix of the equivalent graph. In such a picture, each
vertex represents a component of the field in a link; a
directed bond indicates the linear dependence of the target
on the source mode. An empty (red) vertex indicates that
the related mode link is active, otherwise passive if filled
(see Fig. 1). The inclusion of isolators in the active links
leads to the removal of the blocked fields, and therefore, the
corresponding vertices are removed from the equivalent
graph, which is pruned. It is worth noting that the system
can lase only if at least one active vertex is present in the
pruned graph. At the simplest level of description, the
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photon dynamics in the LANER can be visualized as a
Markovian random walk [10] on such graphs.
We remark the close analogies of this scheme with the

quantum graphs, which have been thoroughly investigated
in the realm of quantum chaos [11,12]. Indeed, in the
Hamiltonian case (gj ¼ 1), N (termed the vertex scattering
matrix) is unitary. The equation for the poles is formally
equal to the one to determine the quantum spectrum of a
particle moving freely along the bonds and scattered at the
graph vertices. In this context, open graphs have been also
considered [13,14]. Experimentally, quantum graphs can be
simulated by microwave networks [15]. Besides the differ-
ent physical nature of our system, an important novel and
controllable element that we deal with here is the optical
gain (possibly in multiple links), which allows us to achieve
the lasing action and investigate entirely new effects.
We start our investigation in the setup corresponding

to the network or graph of Fig. 1(c) (Fig. 1 of the
Supplemental Material [9]). The first feature that we
demonstrate is the existence of a well-defined threshold
for lasing, which manifests experimentally as a sudden
switching of an increasingly large number of distinct peaks
in the emission spectrum upon the increasing of the pump

current. Figure 2(a) shows the onset of the laser action in
the experiment, while Figs. 2(b)–2(c) report the related
results from the theory. In the experiment, at low pump
values, the spectrum is flat, and no emission is visible at
any frequency; then, some peaks appear and, further
increasing the pump, the peaks’ structure becomes more
and more complicated. Their interaction between such
an increasing number of active modes is not apparently
strong enough to determine a standard chaotic dynamic.
Figure 2(b) reports the histogram of the beatings obtained
from the computation of the poles Kn ¼ kn − iμn: all of the
possible differences in frequency are evaluated for the
lasing modes (those with μn > 0), and their distribution is
plotted. The result gives a qualitative estimation of the
beating spectrum and directly compares to the experiment,
showing the same complex hierarchical structure. The poles
Kn for the same geometry are reported in the complex plane
for increasing gain in the active fiber [Fig. 2(c)]. Above a
critical value, a set of resonances cross the real axis, and the
associated modes grow with rate μn > 0 and start to lase.
Since we assumed an infinite gain bandwidth, the dynamics
above threshold will be very high dimensional [12]. In
the experiment, the number of active modes will be limited
by the gain bandwidth. For the case at hand (Er3þ-doped
medium), this is estimated to be of the order of some tens
of nm so that more than 105 modes may be excited. The
peaks’ frequency is not significantly affected by the
pumping, indicating that the nonlinearity only saturates
the amplitude, and gain dispersion is negligible.
The above results are reminiscent of highly multimode

lasers’ behavior; however, the possible choice of complex
network topologies and arbitrary numbers of gain sections
permit a generalization of the geometries for, e.g., longi-
tudinal lasers. Moreover, this sets the peculiar statistical
features of our system that we discuss below.
The classical dynamics of particles on graphs is a chaotic

type of diffusive process [16] that can be described
theoretically by simple one-dimensional piecewise chaotic
maps [17]. It is well known that this reflects in the statistical
properties of the spectra as thoroughly investigated in the
quantum chaos literature. For comparison, we numerically
computed the nearest-neighbor level spacing distribution
PðsÞ, where s ¼ ðknþ1 − knÞ=s̄ are normalized to the
average s̄. All the computed kn were included in the
analysis regardless of the sign of μn and the distributions
averaged over a set of graphs with the same topology
and random lengths. Even for the case above threshold,
Fig. 2(d) shows that PðsÞ resembles the Wigner-Dyson
distribution πs expð−πs2=4Þ=2 typical of chaotic systems
[12]. Actually, individual realizations typically display a
level repulsion similar to that demonstrated for the
Hamiltonian case [18], but deviations are expected in view
of the smallness of the graph.
In Fig. 2(e), we also report the Fourier transform of the

beating spectrum FðlÞ, which is closely related to the
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FIG. 1. Simpler LANERs (white) and their equivalent graphs.
Arrowed (red) segments represent oriented gain sections, num-
bered (black) arrows the modes in the links. Graphs: (red)
circumferences denote active links modes.
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length spectrum (see Supplemental Material [9]); it is
experimentally accessible and relates the spectra to the
underlying classical periodic orbits [12,15]. In particular,
the experimental results (black peaks) well fit the theoreti-
cal prediction (vertical red lines), expressing the lengths
as a combination of the three ring paths of lengths L1,
L2 þ L3, and L4: L2 and L3 are not contributing inde-
pendently as expected.
The interplay of diffusion and amplification of photons

in scattering media, as it occurs in random lasers [7,8], can
lead to heavy-tailed distributions of emission intensities,
characterized by Lévy-stable statistics [19]. This theoretical
prediction [20] (see also [21,22]) has been confirmed in
several experiments [23–25]. To the extent in which the
photons in our networks can be treated as particles under-
going chaotic diffusion, it is thus plausible that the same
phenomenology may also occur in the LANER. We
consider first the configuration in Fig. 1(b). As evidenced
by the graph, it may represent the simpler scheme in our
setup where orbits with gain and with losses coexist, thus
realizing the basic scenario for chaotic diffusion with gain.
This is indeed the case, as shown in Fig. 3. Using a time-
resolved analysis of the amplitude behavior of the peaks,
the dynamics of the emission intensity at ν ¼ 163.57 MHz
is reported in Figs. 3(a) and 3(b). The emission shows rare
large spikes with strong intermittent fluctuations both in

amplitude and time duration. In Fig. 3(c), we present the
histograms PðIÞ of such emission, exhibiting a clear
evidence of a Lévy process (magenta dashed line). For
the same pump current, other peaks display instead a log-
normal distribution; e.g., we show in the figure the case of
ν ¼ 191.94 MHz (yellow). The same results can be found
in the configuration in Fig. 1(c) [a distribution is shown in
the inset of Fig. 3(c)] in spite of the different location of the
gain [now in the link (4)] in the configuration in Fig. 1(d).
The fact that anomalous fluctuations only occur at some

beating frequencies can be justified as follows. In analogy
with the random laser case [20], we expect fluctuations to
occur only for modes which are close enough to threshold,
namely those with jμnj < ε, with ε being some small
characteristic value. If, as suggested by Fig. 2(c), the poles’
density is roughly uniform, the typical spectral separation
between such modes is inversely proportional to ε. Thus,
strongly fluctuating modes will only contribute to the
subset of the beatings lying at a distance of order 1=ε,
while only far-from-threshold modes will contribute to the
remaining, yielding log-normal statistics.
To further check the interpretation, we consider the two

cases of Fig. 1(a) and Fig. 1(e). In the former, only orbits
with gain are possible, thus indicating the settling of
saturated log-normally distributed peaks at the cavity
resonances. This is indeed expected as the configuration
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FIG. 2. Results for the LANER in Fig. 1(c), with L1 ¼ 9.16 m, L2 ¼ 18.12 m, L3 ¼ 5.24 m, L4 ¼ 10.0 m. (a) Experimental intensity
spectrum increasing the pump current. Numerics: (b) beatings for increasing g3 at fixed g1 ¼ g2 ¼ g4 ¼ 0.9, (c) poles in the complex
plane, (d) level spacing distribution, averaged over an ensemble of 30 graphs (104 poles each) with the same topology,
g1 ¼ g2 ¼ g4 ¼ 0.9, g3 ¼ 1.4 and uniformly distributed random Lj with average 10. Wigner (dashed) and Poisson (solid) distributions
are plotted for comparison. (e) Experimental length spectrum [see Eq. (4) in the Supplemental Material [9] ] at J ¼ 80 mA; the vertical
lines represent the combinations mL1 þ nðL2 þ L3Þ þ lL4 with m, l, n integers.
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realizes the standard monodirectional ring laser: without
the isolator, the network would be represented by two
disjoint active graphs, with bistable statistics describing the
random jumps between the two emitted modes.
In the latter, a more complicated situation appears due to

the effect of two gains. We first consider that the link
(1) only in Fig. 1(e) provides gain [the link (4) is now
passive; i.e., its laser pump current is kept sufficiently low].
Here, we found the same phenomenology reported above;
an example of the Lévy statistics for a peak is reported in
Fig. 3(d). As a second case, we increase the pump current in
link (4) so that it has gain as well. The distribution now
shows a multistable shape (see inset); an inspection of the
equivalent graph reveals that there aren’t orbits without
gain. Thus, besides the complex geometry of the network,
we are dealing with an extension of the ring laser: the
multistability arises from the system switching between the
saturated modes of the cavity.
To strengthen the theoretical description, we have

compared the experimental findings with a Monte Carlo
type of model (see Supplemental Material [9]). The
simulation scheme propagates a set of rays through the
network, assigning an intensity, each that grows or
decreases depending on the local value of the gains gj.
Whenever a ray reaches a splitter, it is transmitted towards
one of the connected fibers chosen at random: the transition
probability is given by the splitting factors. Altogether,
the ray motion is a random walk on the graph, while the
accumulated intensity depends on the whole walk history.
The simulation data [for the case of Fig. 1(c)] are presented
in Fig. 3(e), showing the temporal behavior of the intensity

collected at one point of the network. The distribution of
the data is well fitted with a Lévy distribution [Fig. 3(f)].
To conclude, we have presented the LANER as an

optical scheme showing laser action and characterized
by a fully controllable topological disorder. We studied
its emission statistics at the laser threshold, evidencing
heavy-tails fluctuations with Lévy distribution. They are
the typical signature of the interplay of chaotic diffusion
and amplification of the photons in the network and
indicate that the LANER represents an intermediate case
between the standard and the random laser. In particular,
the possibility to include multiple and independent gain
sections is shared with the latter, but the scheme we have
introduced has several advantages in terms of flexibility
and control. For instance, it is continuous-wave pumped at
variance with standard random laser experiments. From the
point of view of basic research, the LANER would allow
different investigations, ranging from dynamics on net-
works of increasing complexity to the effect of the cavity
topology on the laser emission.
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