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We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the
momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the
saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in
momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create
homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measure-
ments, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two.
The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas,
saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially

polarized Fermi gas.
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Ninety years ago, Fermi derived the thermodynamics of
a gas of particles obeying the Pauli exclusion principle [1].
The Fermi gas quickly became a ubiquitous paradigm in
many-body physics; yet even today, Fermi gases in the
presence of strong interactions pose severe challenges to
our understanding. Ultracold atomic Fermi gases have
emerged as a flexible platform for studying such strongly
correlated fermionic systems [2—6]. In contrast to tradi-
tional solid state systems, quantum gases feature tunable
spin polarization, dimensionality, and interaction strength.
This enables the separation of quantum statistical effects
from interaction-driven effects, and invites the exploration
of rich phase diagrams, for example bulk Fermi gases in the
BEC-BCS crossover [3—-10] and Fermi-Hubbard models in
optical lattices [11-20].

So far, Fermi gas experiments have been performed in
inhomogeneous traps, where the nonuniform density leads to
spatially varying energy and length scales. This poses a
fundamental problem for studies of critical phenomena for
which the correlation length diverges. Furthermore, in a gas
with spatially varying density, a large region of the phase
diagram is traversed, potentially obscuring exotic phases that
are predicted to occur in a narrow range of parameters. This is
most severe for supersolid states, such as the elusive FFLO
state [21-23], where the emergent spatial period is well
defined only in a homogeneous setting. A natural solution to
these problems is the use of uniform potentials, which have
recently proved to be advantageous for thermodynamic and
coherence measurements with Bose gases [24-27].

Here, we realize homogeneous Fermi gases in a versatile
uniform potential. For spin-polarized gases, we observe
both the formation of the Fermi surface and the saturation at
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one fermion per momentum state, due to Pauli blocking.
Spatially uniform pair condensates are observed for
spin-balanced gases, offering strong prospects for the
exploration of long-range coherence, critical fluctuations,
and supersolidity.

In cases where the local density approximation (LDA)
is valid, the spatially varying local chemical potential in
an inhomogeneous trap can be utilized for thermodyna-
mic [28-31] and spectroscopic [7,32,33] measurements.
However, reconstructing the local density from line-of-
sight integrated density profiles typically increases noise,
while spatially selecting a central region of the gas reduces
signal. A potential that is uniform along the line-of-sight is
the natural solution. Combining the desirable features of
homogeneous and spatially varying potentials, we intro-
duce a hybrid potential that is uniform in two dimensions
and harmonic in the third. The line-of-sight integration
is now turned into an advantage: instead of averaging
over a wide region of the phase diagram, the integration
yields a higher signal-to-noise measurement of the local
density. Using this geometry, we observe the characteri-
stic saturation of isothermal compressibility in a spin-
polarized gas, while a strongly interacting spin-balanced
gas features a peak in the compressibility near the super-
fluid transition [31].

In our experiment, we prepare atoms in the two lowest
hyperfine states of °Li near a Feshbach resonance, and load
them into the uniform potential of the optical box trap
depicted in Fig. 1(a), after evaporative precooling in a crossed
dipole trap. We typically achieve densities and Fermi energies
ofupton =~ 10> cm™ and E ~ h x 13 kHz, corresponding
to ~10° atoms per spin state in the box. The lifetime of the

© 2017 American Physical Society


https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1103/PhysRevLett.118.123401

PRL 118, 123401 (2017)

PHYSICAL REVIEW LETTERS

week ending
24 MARCH 2017

-60 -30 0 30 60
Position (um)

% 3 6 9 12 o0 05 1 15 2
Er (kHz) n20/M2p
FIG. 1. Homogeneous Fermi gas. (a) Schematic of the box trap

and cuts through the column-integrated density profiles along the
axial and radial directions. (b) Radius of the cloud as a function of
the Fermi energy. The dotted black and dashed red lines
correspond to a perfect box potential and a harmonic potential,
respectively, and are scaled to converge at the highest Ep. The
blue solid line corresponds to a power law potential V(r) ~ r'6.
(c) Measured radial probability density P(n,p) for the column-
integrated density n,p, averaging about 20 in-trap images. The
blue solid and red dashed lines correspond to the uniform and
Gaussian traps, respectively.

Fermi gas in the box trap is several tens of seconds. The
uniform potential is tailored using blue-detuned laser light for
the confining walls. The sharp radial trap barrier is provided
by a ring beam generated by an axicon [34,35], while two
light sheets act as end caps for the axial trapping [36].
Furthermore, the atoms are levitated against gravity by a
magnetic saddle potential [3]. The residual radial anticonfin-
ing curvature of the magnetic potential is compensated
optically, while an axial curvature results in a weak harmonic
potential described by a trapping frequency of w, = 2z x
23.9 Hz. This typically results in a variation of the potential
along the axial direction that is less than 5% of the Fermi
energy. Note that the magnetic moments of the two spin states
of SLi differ by less than 0.1% at unitarity, resulting in a
negligible difference in trapping potentials. We characterize
the steepness of the trap walls by measuring the radial extent R
of the cloud as a function of Fermi energy [see Fig. 1(b)].
Modeling the trap walls with a power law potential, we obtain
V(}’) ~ p102£1.6 [36]

A stringent measure of the homogeneity of the gas is the
probability distribution P(n) for the atomic density n.
Imaging along the z and x directions yields the radial and
axial probability distribution P(n,p) for the column density
nop (see Fig. 1(c) and Ref. [36]). The distribution for the

homogeneous gas is sharply peaked near the trap average
density 77,p. For comparison, we also show P(n,p) for an
optical Gaussian trap, which is spread over a large range of
densities.

Fermions at low temperatures are characterized by Pauli
blocking [1]. Consequences of Pauli blocking have been
observed in ultracold gases, for example, in nondegenerate
samples, the reduction of collisions in spin-polarized gases
below the p-wave threshold [2,37] and, upon entering
degeneracy, Pauli pressure [38,39], reduced collisions
[40,41], antibunching in noise correlations [42], and the
reduction of density fluctuations [43,44]. In optical lattices
under microscopes, Pauli blocking has been observed in
real space through observations of band insulating states
[16,17,45] and of the Pauli hole in pair correlations [20].
Typically obscured in the time of flight expansion of an
inhomogeneous atomic gas, the Fermi surface has been
observed by probing only the central region of a harmoni-
cally trapped gas [46]. Now, the uniform box potential
enables us to directly observe the consequence of Pauli
blocking in momentum space for degenerate gases: the
Fermi-Dirac momentum distribution, featuring the emer-
gence of a Fermi surface near the Fermi wave vector k; and
the saturated occupation of momentum states below kj to
one particle per momentum cell.

To measure the momentum distribution f(k), we release a
highly spin-imbalanced gas (n; /ny < 0.05, where ny andn
are the densities of the majority and minority spin compo-
nents, respectively) from the uniform potential into the small
residual axial harmonic potential (along the z axis). To ensure
the ballistic expansion of the gas, the minority component is
optically pumped into a weakly interacting state within 5 us
[36]. After a quarter period of expansion in the harmonic trap,
the axial momenta k, are mapped into real space via z =
hk./maw, [47-50]. In contrast to conventional time of flight
measurements, this method is unaffected by the in-trap size of
the gas. The measured integrated density profile n,p(z) =

// dxdyn(x,y, z) reflects the integrated momentum distribu-
tion fp(k,) = (Zﬂ)_zljdkxdkyf(kx, ky.k,) via
2nh

Vmo,

le(kz)

nip(z). (1)

Here, V is the volume of the uniform trap. Figure 2(a)
shows the integrated momentum distribution for dif-
ferent temperatures. Assuming a spherically symmetric
momentum distribution, f; = f(k) = f(k). Noting that

[ dk,dk, f(, Ji2+ K2 + kg) — 7 [ d(k)f(k), the three-

dimensional momentum distribution can be obtained from the
integrated momentum distribution by differentiation:

d k
f= 4::%(22). 2)
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FIG. 2. Momentum distribution of the homogeneous spin-polarized Fermi gas. (a) Doubly integrated momentum distribution fp
for different temperatures in the uniform trap. In order of decreasing temperature: red dotted line, orange dashed line, and blue solid
line. Each line corresponds to averages over seven images. The optical density after momentum space mapping along z is shown in the
inset. (b),(c),(d) Momentum distribution f; = —4zdfp/dk?, showing Pauli blocking and Fermi surface formation. Fermi-Dirac fits
(solid line) give (b) T/Tr = 0.49(2), (¢) T/Ty = 0.32(1), and (d) T/Tr = 0.16(1), with k; ranging between 2.8 um~! and 3.7 pm™".

The estimated systematic error in the measurement of f; is 15%.

As the temperature is lowered, the momentum distribution
develops a Fermi surface, and we observe a momentum state
occupation of 1.04(15) at low momenta [see Figs. 2(b)-2(d)],
where the error in f; is dominated by the systematic
uncertainties in the box volume and the imaging magnifica-
tion [36]. This is the direct consequence of Pauli blocking and
confirms saturation at one fermion per momentum state.
An important motivation for the realization of a homo-
geneous Fermi gas is the prospect of observing exotic
strongly correlated states predicted to exist in narrow parts
of the phase diagram, such as the FFLO state [21,22]. In a
harmonic trap, such states would be confined to thin
isopotential shells of the cloud, making them challenging
to observe. We observe pair condensation in a uniformly
trapped strongly interacting spin-balanced Fermi gas
through a rapid ramp of the magnetic field during time
of flight [3,51,52], as shown in Figs. 3(a)-3(c). The pair
condensate at the end of the ramp barely expands in time of
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FIG. 3. Pair condensation in the uniform trap. (a), (b), and

(c) Absorption images after a rapid ramp of the magnetic field and
10 ms of time of flight. The temperature of the gas is lowered (left
to right) by evaporation in the uniform trap. The onset of a
bimodal distribution signals the formation of a pair condensate.
(d), (e), and (f) show cuts through the images in the top row.

flight. As a result, the in-trap homogeneity is reflected in a
flat top profile of the condensate [see Fig. 3(f)].

Although a fully uniform potential is ideal for measure-
ments that require translational symmetry, a spatially vary-
ing potential can access a large region of the phase diagram
in a single experimental run. To harness the advantages of
both potentials, we introduce a hybrid geometry that
combines the radially uniform cylinder trap with an axially
harmonic magnetic trap along the z direction [see Fig. 4(a)].
As a benchmark for the hybrid trap, we perform a thermo-
dynamic study of both a strongly spin-imbalanced and a
spin-balanced unitary gas. Figures 4(c)—4(e) display for both
cases the y-axis averaged local density, temperature, and
compressibility. The data shown in Fig. 4 are extracted from
an average of just six images per spin component. For
comparison, precision measurements of the equation of state
at unitarity, performed in conventional harmonic traps,
required averaging of over 100 absorption images [31].
The temperature is obtained from fits to the known equations
of state of the noninteracting and spin-balanced unitary
Fermi gas, respectively. From the local density in the hybrid
trap, we determine the normalized isothermal compressibil-
ity K = k/kg = —0Ep/0U| for the spin-imbalanced and
the spin-balanced gas. Here, U is the external potential, and
Ko =3 (1/nEp) is the compressibility of the noninteracting
Fermi gas at zero temperature [31].

The strongly spin-imbalanced cloud features two distinct
regions in the trap. The center of the cloud is a partially
polarized region in which (ny —n)/(ny +n;) > 0.64,
well above the Clogston-Chandrasekhar limit of super-
fluidity [53-55]. Surrounding the center is a fully polarized
region, where the compressibility is seen to saturate: the
real space consequence of the Pauli blocking in momentum
space demonstrated in Fig. 2.

The majority spin component in the partially polarized
region is affected by the presence of the minority spin compo-
nent. We measure the compressibility k4 = —0Ep4/0U in
the partially polarized region, and observe an increase
compared to the fully polarized gas. This is expected as
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FIG. 4. Unitary Fermi gases in the hybrid trap. (a) Schematic
and potential of the trap. The cloud is imaged along an
equipotential direction (x axis). Left panels of (b)—(e) show a
spin-imbalanced gas above the Clogston-Chandrasekhar limit,
whereas the right side corresponds to a spin-balanced gas. The
data are averaged over six images. (b) Local density for both spin
components, obtained by dividing the column density by the
column length. (c) Average density for each x-y equipotential
slice. The blue (red) line shows the spin-up (-down) component.
(d) Spatially resolved temperature of the gas. The blue shaded
region represents the error in the temperature determination.
(e) Compressibility of the gas. The solid line in the left panel is
the compressibility for an ideal Fermi gas. The crossover from the
fully polarized (FP) region to the partially polarized (PP) region is
accompanied by an increase in k. The yellow squares in the right
panel correspond to a precision measurement of the balanced
unitary equation of state in the harmonic trap [31]. The peaks in
the compressibility signal the phase transition from normal (N) to
superfluid (SF). The horizontal dashed line shows the zero-
temperature equation of state x/kxy = 1/&.

the minority atoms in the center of the trap attract majority
atoms and form polarons [7,8]. The effect is indeed predicted
by the polaron equation of state [29,30,56]. The observation
of this subtle effect highlights the sensitivity of the hybrid
potential for thermodynamic measurements.

In the spin-balanced case, k/k is significantly larger than
for the ideal Fermi gas due to strong interactions. The two
prominent peaks in the reduced compressibility signal the
superfluid transition at the two boundary surfaces between
the superfluid core and the surrounding normal fluid. Near
the center of the trap, the reduced compressibility agrees
with the T = 0 equation of state x/ky = 1/& = 2.65(4),

where £ is the Bertsch parameter. The shaded region in the
right column of Fig. 4 shows the superfluid part of the gas,
where the temperature is below the critical temperature for
superfluidity 7. = 0.17T ¢ [31].

The realization of uniform Fermi gases promises further
insight into phases and states of matter that have eluded
observation or quantitive understanding. This includes the
observation of the quasiparticle jump [57] in the momentum
distribution of a Fermi liquid, critical fluctuations in the BEC-
BCS crossover, and long-lived solitons [58]. Of particular
interest are spin imbalanced mixtures that have been studied
extensively in harmonic traps [29,30,55,59-62], where the
trap drives the separation of normal and superfluid phases into
a shell structure. This phase separation should occur sponta-
neously in a uniform spin-imbalanced gas, possibly forming
domains of superfluid and eventually ordering into an FFLO
state. In addition, the hybrid potential is a valuable tool for
precision measurements that rely on an in-trap density
variation. For example, spatially resolved rf spectroscopy
[32] in the hybrid potential would measure the homogenous
response of the system over a large range of normalized
temperatures 7 /T 5 in a single experimental run.
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