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We demonstrate numerically the existence of a nontrivial topological Haldane phase for the one-
dimensional extended (U-V) Hubbard model with a mean density of one particle per site, not only for
bosons but also for anyons, despite a broken reflection parity symmetry. The Haldane insulator, surrounded
by superfluid, Mott insulator, and density-wave phases in the V-U parameter plane, is protected by
combined (modified) spatial-inversion and time-reversal symmetries, which is verified within our matrix-
product-state based infinite density-matrix renormalization group scheme by analyzing generalized transfer
matrices. With regard to an experimental verification of the anyonic Haldane insulator state the calculated
asymmetry of the dynamical density structure factor should be of particular importance.
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Anyons represent a third fundamental class of particles
with fractional exchange statistics that interpolates, to some
degree, between those of bosons and fermions having
symmetric or antisymmetric wave functions under
exchange [1,2]. By contrast, the exchange of two anyons
creates a phase factor eiθ in the many-body wave function,
where the statistical parameter θ can be of any value in the
interval ð0; πÞ. In the beginning anyons were thought to be
relevant solely for two-dimensional systems. Describing
the fractional quantum Hall effect experiments in particular,
the quasiparticles could be viewed as anyons with θ fixed
by the filling factor [3,4]. With Haldane’s generalized
Pauli principle and definition of fractional statistics, how-
ever, the concept of anyons becomes important in arbitrary
dimensions [5].
In one dimension, the physics of anyons might be studied

successfully with ultracold atoms in optical lattices [6]. For
example, one-dimensional (1D) anyon statistics can be
implemented by bosons with occupation-dependent hopping
amplitudes generated by assisted Raman tunneling [7,8]. An
alternative route to create 1D anyons in an optical lattice
exploits lattice-shaking-assisted tunneling against potential
offsets generated by a combination of a static potential tilt
and strong on-site interactions [9]. Thereby, advantageously,
no additional lasers are required, except for those employed
on creating optical lattices. However, in spite of the huge
experimental efforts, a conclusive detection of 1D anyons in
optical lattices has not yet been achieved.
Notwithstanding, from a theoretical point of view, anyons

in one dimension have received continuous and legitimate
interest on account of their intriguing physical properties.
The exact solution of a 1D anyon gas with a delta-function
potential has been obtained by a Bethe ansatz technique [10].
Boundary conformal field theory shows that non-Abelian
anyons may form topological insulating phases in spin-1=2
suð2Þk chains [11]. For the Abelian 1D anyon-Hubbard

model (AHM), the possibility of a statistically induced
quantum phase transition between Mott-insulator (MI) and
superfluid phases [7,12] and the asymmetry of the momen-
tum distribution for hard-core [13] and soft-core anyons [14]
have been addressed so far. Since the AHM is equivalent to a
variant of the Bose-Hubbard model (BHM) with state-
dependent bosonic hopping amplitudes [7], the next very
interesting question might be whether the symmetry-
protected topological (SPT) Haldane state [15,16], observed
in the extended BHM (EBHM) with an additional nearest-
neighbor particle repulsion [17,18], also shows up in the
extended AHM (EAHM). Because of its SPT order, the
Haldane phase in the EBHM is separated from the topo-
logically trivial MI phase by a phase transition, as long as
the protecting symmetry—being a combination of bond-
centered inversion and a local unitary transformation—keeps
up [16]. By breaking this symmetry, the two phases can be
adiabatically connected without crossing a phase transition.
Therefore, a sharp distinction between the two phases is only
possible in the presence of the protecting symmetry, even
though no spontaneous symmetry breaking occurs. As the
hopping phase factor breaks the reflection parity in the
system [19], naively one might expect the Haldane state to
disappear in the EAHM for any finite fractional phase θ.
However, this will not happen if the protecting symmetry is
appropriately generalized for finite θ.
To comment on an anyonic topological Haldane state in

one dimension, we scrutinize its protecting symmetry in the
framework of the EAHM by analyzing the invariance of the
density-dependent hopping amplitudes (as for the EBHM
in the limit θ → 0). Calculating the generalized transfer
matrices [20] from the infinite matrix-product state (iMPS)
of the infinite density-matrix renormalization-group
(iDMRG) [21–23] simulations, we prove the existence
of the Haldane insulator (HI) state and derive the complete
ground-state phase diagram of this paradigmatic anyonic
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model Hamiltonian at unit filling. In order to discriminate
the topological HI phase from the other, more conventional
Mott and density-wave (DW) insulating phases in possible
future experiments, we also determine the dynamical
density response of the system, showing a characteristic
asymmetry in the Brillouin zone, which can be attributed to
the fractional phase factor of the anyons.
The Hamiltonian of the 1D EAHM consists of three

terms, ĤðaÞ
EAHM ≡ Ĥt þ ĤU þ ĤV , with

Ĥt ¼ −t
X

j

ðâ†j âjþ1 þ H:c:Þ; ð1Þ

ĤU ¼ U
P

jn̂jðn̂j − 1Þ=2, and ĤV ¼ V
P

jn̂jn̂jþ1, describ-
ing the nearest-neighbor anyon transfer (∝ t), as well as the
repulsive on-site (∝ U) and nearest-neighbor (∝ V) particle
interaction, respectively. The anyon creation (â†j ), annihi-

lation (âj), and particle number (n̂j ¼ â†j âj) operators at
lattice site j are defined by the generalized commutation
relations [7,10]:

âjâ
†
l − e−iθsgnðj−lÞâ†lâj ¼ δjl; ð2Þ

âjâl − eiθsgnðj−lÞalaj ¼ 0; ð3Þ

where the sign function sgnðj − lÞ ¼ 0 for j ¼ l is
mandatory, since two anyons on the same site behave as
ordinary bosons. Anyons with θ ¼ π represent so-called
“pseudofermions,” namely, they are fermions off site, while
being bosons on site.
Performing a fractional Jordan–Wigner transformation

[7],

âj ¼ b̂je
iθ
P

j−1
l¼1

n̂l ; ð4Þ

where b̂†j (b̂j) is a boson creation (annihilation) operator,

ĤðaÞ
EAHM becomes ĤðbÞ

EAHM with density-dependent hopping
amplitudes,

Ĥt ¼ −t
X

j

ðb̂†j b̂jþ1eiθn̂j þ e−iθn̂j b̂†jþ1b̂jÞ: ð5Þ

That is, when a boson hops to the left from site jþ 1 to site
j it acquires an occupation dependent phase eiθn̂j . Of
course, n̂j ¼ â†j âj ¼ b̂†j b̂j, which means that ĤU and ĤV

are form invariant under the anyon-boson mapping (4).
If we limit the maximum number of particles per site as

np ¼ 2, the EBHM, resulting in the limit θ → 0 from

ĤðbÞ
EAHM, maps to an effective XXZ spin-1 chain [18]:

Ĥeff ¼ −t
X

j

ðŜþj Ŝ−jþ1 þ H:c:Þ þ U
2

X

j

ðŜzjÞ2

þ V
X

j

ŜzjŜ
z
jþ1 ð6Þ

with the pseudospin operator Ŝzj ¼ n̂j − 1. Here, we have
neglected terms that break the particle-hole symmetry. We
note the negative sign of the first term compared to the
usual XXZ spin-chain Hamiltonian. This leads to a protect-
ing modified inversion symmetry I 0 for the Haldane state
of the EBHM [16]:

I 0 ¼ eiπ
P

j
ŜzjI ¼ eiπ

P
j
ðn̂j−1ÞI : ð7Þ

Owing to the occupation-dependent hopping in Eq. (5) the
HI phase in the EAHM seems not be protected by the
modified inversion symmetry I 0.
To clarify whether Ĥt is invariant under certain sym-

metry operations, let us first consider the inversion
symmetry operator I, acting on Ĥt → Ĥ0

t ¼ IĤtI† with

Ĥ0
t ¼ −t

X

j

ðb̂†jþ1b̂je
iθn̂jþ1 þ e−iθn̂jþ1 b̂†j b̂jþ1Þ: ð8Þ

Applying next a time-reversal transformation T ,
Ĥ0

t → Ĥ00
t ¼ T Ĥ0

tT −1, we obtain

Ĥ00
t ¼ −t

X

j

ðb̂†jþ1b̂je
−iθn̂jþ1 þ eiθn̂jþ1 b̂†j b̂jþ1Þ: ð9Þ

To see that Ĥt stays invariant under the combined sym-
metry operations, we make the following transformation:

b̂†j → eiθn̂jðn̂j−1Þ=2b̂†je
−iθn̂jðn̂j−1Þ=2 ¼ b̂†je

iθn̂j ; ð10Þ

b̂j → eiθn̂jðn̂j−1Þ=2b̂je−iθn̂jðn̂j−1Þ=2 ¼ e−iθn̂j b̂j: ð11Þ

Since the second term of Eq. (9) transforms as
eiθn̂jþ1 b̂†j b̂jþ1 → b̂†j b̂jþ1eiθn̂j , it is equal to the first term

of Ĥt. Therefore, the Hamiltonian ĤðbÞ
EAHM is invariant under

the transformation

K ¼ eiθ
P

j
n̂jðn̂j−1Þ=2IT : ð12Þ

We now show that the combination of Rz ¼ eiπ
P

j
Ŝzj ¼

eiπ
P

j
ðn̂j−1Þ and K is related to an SPT phase in the EAHM,

and define a corresponding topological order parameter.
Following Ref. [24], we use the iMPS representation
formed by complex χ × χ matrices Γσ and a positive, real,
diagonal matrix Λ:

jψi ¼
X

…σj;σjþ1…

…ΛΓσjΛΓσjþ1
…j…; σj; σjþ1;…i; ð13Þ

where the index σ labels the basis states of the local Hilbert
spaces. The iMPS is assumed to be in the canonical form:P

σΓσΛ2Γ†
σ ¼ P

σΓ
†
σΛ2Γσ ¼ 1. If a state jψi is invariant

under an internal symmetry that is represented by a unitary
matrix Σσσ0 , then the transformed Γσ matrices satisfy
[16,25]
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X

σ0
Σσσ0Γσ0 ¼ eiφU†ΓσU; ð14Þ

whereU is a unitary matrix that commutes with Λmatrices,
and eiφ is a phase factor. Similar relations hold for time
reversal symmetry, inversion symmetry, and a combination
of both. In those cases Γσ on the left-hand side is replaced
by its complex conjugate Γ�

σ , its transpose ΓT
σ , and its

Hermitian transpose Γ†
σ, respectively. The properties of the

matrices U can be used to classify SPT phases [16,26].
For instance, in the case of time reversal or (modified)
inversion symmetry the matrices satisfy UT U�

T ¼ �1 or
UI ð0ÞU�

I ð0Þ ¼ �1, and the sign distinguishes between two
symmetric phases. In the EAHM, the situation is slightly
different because time reversal and inversion are not
symmetries of the system; only a combination K of them
is. For Rz and K we have U2

Rz ¼ eiαRz1 and U2
K ¼ eiαK1.

From this we can derive an SPT order parameter similar to
the case of the Z2 × Z2 spin rotation symmetry of Rz and
Rx in the spin-1 XXZ chain [16]. Since the phase factors
eiαRz and eiαK can be removed by absorbing them into the
corresponding matrices URz and UK they have no physical
meaning. However, if both Rz and K are preserved, the
combination RzK is a symmetry as well and its phase
factor is not arbitrary if URz and UK have been fixed.
Indeed, one can show that URzUK ¼ �UKURz , which
defines two different phases. To verify that the EAHM has a
nontrivial topological phase protected by Rz and K, we
calculate the order parameter [20]

O ¼ 1

χ
trðUKURzU†

KU
†
RzÞ; ð15Þ

if the state is symmetric under bothK andRz. Otherwise, if
one of the symmetries is broken, the order parameter
is zero.
The iDMRG results for the order parameter are shown in

Fig. 1. If UK and URz commute (O ¼ 1), the system is in a
trivial phase, i.e., a site-factorizable MI state, whereas if
they anticommute (O ¼ −1), the system realizes a non-
trivial HI state. Since the order parameter O changes its
sign only if a phase transition takes place, the HI is a well-
defined phase of the EAHM. Increasing the number of
particles per site np at fixed U=t ¼ 5, the HI phase
(O ¼ −1) slightly shifts to larger value of V=t but, most
notably, the Haldane phase still occupies a solid parameter
region, see the data for np ¼ 3 and 5 in Fig. 1(a). Increasing
the fractional angle θ for np ¼ 2, the Haldane state region
narrows [see Fig. 1(b) for θ ¼ π=2] and disappears (at least)
for θ ¼ π [33]. We would like to emphasize that the HI
sector marked in Fig. 1 by the gray area agrees with that
extracted from the correlation length, the entanglement
spectrum, and the numerically obtained central charge [27].
Figure 2 represents the ground-state phase diagram of the

1D EAHM in the V-U plane, as obtained from large-scale

iDMRG calculations for θ ¼ π=4 and np ¼ 2. The phase
boundaries are determined simulating the order parameter
O, as well as the correlation length and the entanglement
spectrum [27]. The EAHM exhibits three different

FIG. 1. Order parameter O, defined by Eq. (15), selecting the
topological state in the EAHM at fixed U=t ¼ 5 and θ ¼ π=4 for
different np (a), and at fixed θ ¼ π=2 and π for np ¼ 2 (b). Data
obtained by iDMRG calculations with a (relatively small) bond
dimension χ ¼ 100.

FIG. 2. Ground-state phase diagram of the extended anyon-
Hubbard model in one dimension, where the particle density
ρ ¼ 1, np ¼ 2, and θ ¼ π=4. Most notably the Haldane insulator
(HI), located between Mott insulator (MI) and density wave
(DW) insulating phases in the EBHM, survives for any θ > 0, i.e.,
in the anyonic case. Likewise, the superfluid (SF) appears in the
very weak-coupling regime. The MI-HI (squares) and HI-DW
(circles) transition points can be determined by a divergent
correlation length ξχ as χ increases; i.e., the model becomes
critical with the central charge c ¼ 1 and c ¼ 1=2, respectively
(see Ref. [27]). For comparison, the dotted (dashed) line marks
the MI-HI (HI-DW) transition in the EBHM (θ ¼ 0) [34]. The
dash-dotted line with triangles up denotes the first-order MI-DW
phase transition for θ ¼ π.
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insulating phases (MI, DW, and HI) and a superfluid state
in the weak interaction regime, just as for the EBHM [34]
but with the addition that the region of the intervening
anyonic HI phase at θ ¼ π=4 is slightly reduced. The HI
vanishes in the pseudofermionic case (θ ¼ π). According to
field theory for the EBHM [18,35], which is based on the
bosonization procedure developed for integer-spin chains
[36,37], the MI-HI and HI-DW quantum phase transitions
belong to the universality class of Tomonaga-Luttinger
liquid and Ising model, with central charge c ¼ 1 and 1=2,
respectively, see Fig. S1(c) in Ref. [27]. That is, the
universality classes are not modified by the fractional
angle.
Perhaps the most striking feature of the AHM is the

asymmetry of the momentum distribution function in k
space [13,14]. The position of the maximum strongly
depends on the fractional phase θ [recall that the momen-
tum distribution diverges at k ¼ 0 in the BHM (θ ¼ 0)].
We expect that this asymmetry can also be observed in
dynamical quantities such as the dynamical structure factor
Sðk;ωÞ. Hence, if an anyonic system will be realized in
optical lattices, Sðk;ωÞ might be one of the best physical
quantities to look at, comparing theoretical predictions with
real experiments, like for 1D Bose–Hubbard type models
[38]. Sðk;ωÞ should be easily accessible by momentum
resolved Bragg spectroscopy [39]. Furthermore, it has been
recently demonstrated that Sðk;ωÞ can also be used to
distinguish the topological HI from the conventional MI
and DW states [34,40], in analogy to exploiting the
dynamical spin-spin structure factor in the spin-1 XXZ
chain [41].
The dynamical density structure factor is defined as

Sðk;ωÞ ¼
X

n

jhψnjn̂kjψ0ij2δðω − ωnÞ; ð16Þ

where jψ0i (jψni) denotes the ground (nth excited) state,
and ωn ¼ En − E0. To compute this quantity, we follow
Ref. [42] and first determine the two-point correlation

function hψ0jn̂jðτÞn̂0ð0Þjψ0i by real-time evolution of the
iMPS jψ0i. Fourier transformation then provides us with
accurate numerical results of the dynamical structure factor
in the EAHM.
Figure 3 compares the intensity of the dynamical wave-

vector–resolved density response in the EBHM (θ ¼ 0)
with those in the EAHM for θ ¼ π=4, for U=t ¼ 5, at five
characteristic V=t values. One point worthy of remark is
that each of the phases and phase transitions can be
distinguished by looking at Sðk;ωÞ. In the MI, at V ¼ t
[Figs. 3(a) and 3(f)], the excitation gap appears at k ≈ 0.
With increasing V=t, the MI-HI transition occurs at
V ≃ Vc1, where the excitation gap closes at k ¼ 0, as
shown in Figs. 3(b) and 3(g). Deep in the HI phase, V ¼ 3t
[Figs. 3(c) and 3(h)], the spectral weight exclusively
concentrates at k≃ π, and there are finite excitation gaps
at k ¼ 0 and π. It is of particular interest to see whether the
gap Sðk;ωÞ closes at the HI-DW transition point. Indeed,
the excitation gap at V ¼ Vc2 closes, but at momentum
k ¼ π, reflecting the lattice-period doubling in the DW
phase. Moreover, in the DW phase [Figs. 3(e) and 3(j)], we
find a large excitation gap at k ¼ π and two dispersive
branches, where a changeover of the intensity maximum
occurs at k ¼ π=2 (k ¼ 3π=4) for θ ¼ 0 (θ ¼ π=4).
Interestingly, the influence of the occupation-dependent
phase of Ĥt in Eq. (5) shows up in Sðk;ωÞ as well, which
helps to differentiate the results from those of the EBHM.
Sðk;ωÞ of the EAHM is asymmetric for any 0 < θ < π,
while Sðk;ωÞ in the EBHM is always symmetric about
k ¼ π.
To summarize, we carried out an unbiased numerical

investigation of the extended anyon-Hubbard model in one
dimension and determined its ground-state phase diagram
with high precision exploiting the behavior of correlation
lengths and entanglement spectra. Defining an order param-
eter that distinguishes trivial and nontrivial topological
phases, we were able to show that the EAHM possesses

FIG. 3. Intensity plots of the dynamical structure factor Sðk;ωÞ in the EBHM (θ ¼ 0, upper panels) and in the EAHM (θ ¼ π=4, lower
panels) for characteristic values of V=t at fixed U=t ¼ 5. Again, the maximum number of particles per site is limited to np ¼ 2. Dashed
lines in panels (b)–(d) and (g)–(i) mark the highest intensity of Sðk;ωÞ in the k-ω plane.
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an anyonic Haldane insulator state sandwiched between
superfluid, Mott insulator, and density-wave phases. Both
the HI-MI and HI-DW quantum phase transitions are critical
with central charge 1 and 1=2, respectively. While the HI
state survives the EBHM limit (θ ¼ 0), it vanishes when the
system is composed of pseudofermions (θ ¼ π). If a 1D
interacting anyonic system could be realized experimentally
in the future, maybe in an optical-lattice setup with ultracold
atoms, we suggest performing momentum-resolved Bragg
spectroscopy to look for the pronounced asymmetry of the
density response spectra in momentum space that we have
demonstrated in our model calculation theoretically.

The iDMRG simulations were performed using the
ITensor library [43]. This work was supported by
Deutsche Forschungsgemeinschaft (Germany), SFB 652,
Project No. B5.
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