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In a Kondo lattice, the spin exchange coupling between a local spin and the conduction electrons
acquires nonlocal contributions due to conduction electron scattering from surrounding local spins and the
subsequent RKKY interaction. It leads to a hitherto unrecognized interference of Kondo screening and
the RKKY interaction beyond the Doniach scenario. We develop a renormalization group theory for the
RKKY-modified Kondo vertex. The Kondo temperature TKðyÞ is suppressed in a universal way, controlled
by the dimensionless RKKY coupling parameter y. Complete spin screening ceases to exist beyond a
critical RKKY strength yc even in the absence of magnetic ordering. At this breakdown point, TKðyÞ
remains nonzero and is not defined for larger RKKY couplings y > yc. The results are in quantitative
agreement with STM spectroscopy experiments on tunable two-impurity Kondo systems. The possible
implications for quantum critical scenarios in heavy-fermion systems are discussed.

DOI: 10.1103/PhysRevLett.118.117204

The concept of fermionic quasiparticles existing even in
strongly interacting many-body systems is fundamental for
a wealth of phenomena summarized under the term Fermi
liquid physics. In heavy-fermion systems [1], quasiparticles
with a large effective mass are formed by the Kondo effect
[2]. The conditions under which these heavy quasiparticles
disintegrate near a quantum phase transition (QPT) have
been an important, intensively debated, and still open issue
for many years [1].
The heavy Fermi liquid, like any other Fermi liquid, may

undergo a spin density-wave (SDW) instability, leading to
critical fluctuations of the magnetic order parameter but
leaving the heavy quasiparticles intact. This scenario is well
described by the pioneering works of Hertz, Moriya, and
Millis [3–5]. However, early on Doniach pointed out [6]
that the Kondo spin screening of the local moments should
eventually cease and give way to magnetic order, when the
RKKY coupling energy between the local moments [7–9]
becomes larger than the characteristic energy scale for
Kondo singlet formation, the Kondo temperature TK . It is
generally believed that the Kondo destruction is driven by
the critical fluctuations near a QPT. Several mechanisms
have been proposed, invoking different types of fluctua-
tions, including critical fluctuations of the local magneti-
zation coupling to the fermionic quasiparticles (local
quantum criticality) [10,11] and Fermi surface fluctuations
self-consistently generated by the Kondo destruction [12].
Most recently, a scenario of critical quasiparticles with
diverging effective mass and a singular interaction, induced
by critical antiferromagnetic fluctuations, has been put
forward [13–15]. Intriguing in its generality, it does,
however, not invoke Kondo physics.
Here, we show that the heavy-electron quasiparticles can

be destroyed by the RKKY interaction even without critical

fluctuations. This occurs because of a hitherto unrecognized
feedback effect: in a Kondo lattice or multi-impurity system,
the RKKY interaction, parametrized by a dimensionless
coupling y, reduces the Kondo screening energy scale
TKðyÞ. This reduction implies an increase of the local spin
susceptibility at low temperatures T, χfðT ¼ 0Þ ∼ 1=TKðyÞ,
which in turn increases the effective RKKY coupling. We
derive this effect and analyze it by a renormalization group
(RG) treatment. In particular, we calculate the temperature
scale forKondo singlet formation in aKondo lattice,TKðyÞ. It
is suppressed with increasing y in a universal way. Beyond
a critical RKKY coupling yc, complete Kondo singlet
formation ceases to exist. However, at this breakdown point
TKðycÞ remains finite, and the suppression with respect
to the single-impurity Kondo scale takes a universal value,
TKðycÞ=TKð0Þ ¼ 1=e, where e ¼ 2.718… is Euler’s con-
stant. These findings are consistent with conformal field
theory results [16,17] and in quantitative agreement with
STM spectroscopy experiments on tunable, RKKY-coupled
two-impurity Kondo systems [18,19].
The present results directly apply to cases where long-

range order does not play a role, that is, two-impurity
Kondo systems [18–20], compounds where the magnetic
ordering does not occur at the Kondo breakdown point
[21], and temperatures sufficiently above the Néel temper-
ature [22]. They will set the stage for a complete theory of
heavy-fermion quantum criticality by including critical
order-parameter fluctuations either of the incompletely
screened magnetic moments or of an impending SDW
instability.
The model.—We consider the Kondo lattice model

H ¼
X
k;σ

εkc
†
kσckσ þ J0

X
i

Si · si; ð1Þ
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where ckσ, c
†
kσ denote the conduction (c) electron operators

with dispersion εk. Si are the local spin operators at the
lattice sites xi, exchange coupled to the conduction electron
spins si ¼

P
σ;σ0c

†
iσσσσ0ciσ0 via an on-site, antiferromagnetic

coupling J0 > 0. The local spins will henceforth be termed
f spins, as they are typically realized in heavy fermion
systems by the rare-earth 4f electrons. We will use
the pseudofermion representation of the f spins, Si ¼
1=2

P
τ;τ0f

†
iτσττ0fiτ0 with σ the vector of Pauli matrices

and fiσ, f
†
iσ0 fermionic operators obeying the constraint

Q̂ ¼ P
σf

†
iσfiσ ¼ 1. It is crucial that the coupling between

different f spins is not a direct exchange interaction, but
mediated by the conduction band [7–9] and generated in
second order by the same spin coupling J0 that also creates
the Kondo effect. The essential difference can be seen from
the example of a two-impurity Kondo system S1, S2: with a
direct impurity-impurity coupling KS1 · S2, and for a
specific particle-hole symmetry [16], this model can exhibit
a dimer singlet phase where the dimer is decoupled from
the conduction electrons (scattering phase shift at the Fermi
energy ϕdimer ¼ 0). As a function of K, this dimer singlet
phase is then separated from the Kondo singlet phase
(scattering phase shift ϕKondo ¼ π=2) by a quantum critical
point (QCP) [16,23], see also Ref. [17]. By contrast, when
the interimpurity coupling is controlled by the RKKY
interaction only, i.e., generated by J0, a decoupled dimer
singlet and, hence, a second-order QCP is not possible.
Instead, we find below that the Kondo singlet formation at
T ¼ 0 breaks down at a critical strength of the RKKY
coupling, however without a diverging local impurity
susceptibility, that is, with a discontinuous jump of
TKðyÞ. The profound implications of this behavior will
be discussed below.
RKKY-coupled c-f vertex and renormalization group.—

We develop an analytical renormalization group for RKKY-
coupled Kondo multi-impurity and lattice systems, taking
the proper renormalizations of all appearing vertices into
account. The RKKY vertex Γ̂ff coupling two f spins has
no logarithmic RG flow, since the recoil (momentum
integration) of the itinerant conduction electrons prevents
an infrared singularity of the RKKY interaction. Γ̂ff thus
remains in the weak coupling regime. The formation of the
strong-coupling Kondo singlet, which is the origin of
the heavy-Fermion state, is signalled by a RG divergence
of the spin-scattering vertex operator Γ̂cf between c
electrons and an f spin. In the case of multiple Kondo
sites, this vertex acquires nonlocal contributions in addition
to the local coupling J at a site i, because a c electron can
scatter from a distant Kondo site j ≠ i, and the spin flip at
that site is transferred to the f spin at site i via the RKKY
interaction. In this way, Γ̂ff will influence the RG flow of

Γ̂cf, even though it is not renormalized itself. The corre-
sponding diagrams are shown in Fig. 1(a). As seen from the

figure, such a nonlocal scattering process necessarily
involves the exact, local dynamical f-spin susceptibility
χfðiΩÞ on site j. The resulting c-f vertex Γ̂cf has the
structure of a nonlocal Heisenberg coupling in spin space.

The exchange diagram, γðxÞRKKY in Fig. 1(a), contributes only

a subleading logarithmic term as compared to γðdÞRKKY [24].
In particular, it does not alter the universal TKðyÞ sup-
pression derived below and can, therefore, be neglected. To
leading (linear) order in the RKKY coupling, Γ̂cf thus reads
(in Matsubara representation)

Γ̂cf ¼ ½Jδij þ γðdÞRKKYðrij; iΩÞ�Si · sj

¼ ½Jδij þ 2JJ20ð1 − δijÞχcðrij; iΩÞ~χfðiΩÞ�Si · sj; ð2Þ

where rij ¼ xi − xj is the distance vector between the sites
i and j, and Ω is the energy transferred in the scattering
process. χcðrij; iΩÞ is the c electron density correlation
function between sites i and j [bubble of solid lines in
Fig. 1(a)] and ~χfðiΩÞ ≔ χfðiΩÞ=ðgLμBÞ2 with gL the Landé
factor and μB the Bohr magneton. Note that Eq. (2) contains
the running coupling J at site i, which will be renormalized
under the RG, while at the site j, where the c electron
scatters, the bare coupling J0 appears, since all vertex
renormalizations on that site are already included in the
exact susceptibility χf. Higher order terms, as for instance
generated by the RG [see below, Fig. 1(b)], lead to
nonlocality of the incoming and outgoing coordinates of
the scattering c electrons, xj, xj0 , but the f-spin coordinate
xi remains strictly local, since the pseudofermion propa-
gator GfðiνÞ ¼ 1=iν is local [26]. For this reason, speaking
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FIG. 1. (a) f-spin–c-electron vertex Γ̂cf , composed of the on-
site vertex J at site i and the RKKY-induced contributions from
surrounding sites j ≠ i to leading order in the RKKY coupling:

γðdÞRKKY (direct term) and γðxÞRKKY (exchange term). (b) One-loop
diagrams for the perturbative RG. Solid lines: electron Green’s
functions Gc. Dashed lines: pseudofermion propagatorsGf of the
local f spins. The red bubbles represent the full f-spin suscep-
tibility at sites j.
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of Kondo singlet formation on a single Kondo site is well
defined even in a Kondo lattice, and so is the local
susceptibility χf of a single f spin. The corresponding
Kondo scale TK on a site j is observable, e.g., as the Kondo
resonance width measured by STM spectroscopy on one
Kondo ion of the Kondo lattice. The temperature depend-
ence of the single-site f-spin susceptibility is known from
the Bethe ansatz solution [27] in terms of the Kondo scale
TK . It has a T ¼ 0 value χfð0Þ ∝ 1=TK and crosses over to
the 1=T behavior of a free spin for T > TK. These features
can be modeled in the retarded or advanced, local,
dynamical f-spin susceptibility χfðΩ� i0Þ as

χfðΩ� i0Þ ¼ ðgLμBÞ2W
πTK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðΩ=TKÞ2

p
�
1� 2i

π
arsinh

Ω
TK

�
;

ð3Þ

where W is the Wilson ratio, and the imaginary part is
implied by the Kramers-Kronig relation.
We now derive the one-loop RG equation for the c-f

vertex Γ̂cf, including RKKY-induced, nonlocal contribu-
tions. The one-loop spin vertex function is shown dia-
grammatically in Fig. 1(b). Using Eq. (2), the sum of these
two diagrams is up to linear order in the RKKY coupling

Yðrij; iωÞ ¼ −JT
X
iΩ

½Jδij þ γðdÞRKKYðrij; iΩÞ

þ γðdÞRKKYðrij;−iΩÞ� × ½Gcðrij; iω − iΩÞ
−Gcðrij; iωþ iΩÞ�GfðiΩÞ: ð4Þ

Here, ω is the energy of the incoming conduction electrons,
Gcðrij; iωþ iΩÞ is the single-particle c electron propagator
from the incoming to the outgoing site. For example, for an
isotropic system, Gcðr;ω� i0Þ ¼ −πNðωÞe�ikðεFþωÞr=
kðεF þ ωÞr with the bare density of states NðωÞ, and
kðεF þ ωÞ the modulus of the momentum corresponding to
the energy ω.
For the low-energy physics, the vertex renormalization

for c electrons at the Fermi surface is required. This means
setting the energy iω → ω ¼ 0þ i0 and Fourier trans-
forming the total vertex Yðrij; iωÞ with respect to the
incoming and outgoing c electron coordinates xj, xi,
and taking its Fourier component for momenta at the
Fermi surface kF, see Ref. [24]. Note that at the Fermi
energy YðkF; 0Þ is real, even though the RKKY-induced,

dynamical vertex γðdÞRKKYð�iΩÞ appearing in Eq. (4) is
complex valued [24]. This ensures the total vertex operator
of the renormalized Hamiltonian is Hermitian. By analytic
continuation, the Matsubara summation in Eq. (4) becomes
an integration over the intermediate c electron energy from
the lower and upper band cutoff D to the Fermi energy
(Ω ¼ 0). The coupling constant renormalization is then
obtained in the standard way by requiring that YðkF; 0Þ be

invariant under an infinitesimal reduction of the running
band cutoffD. Note that the band cutoff appears in both the
intermediate electron propagator Gc and in χc. However,
differentiation of the latter does not contribute to the
logarithmic RG flow. This leads to the one-loop RG
equation [24]

dg
d lnD

¼ −2g2
�
1 − yg20

D0

TK

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðD=TKÞ2

p
�
; ð5Þ

where we have introduced the dimensionless couplings
g ¼ Nð0ÞJ, g0 ¼ Nð0ÞJ0, and D0 is the bare band cutoff.
The first term on the right-hand side of Eq. (5) is the on-site
contribution to the differential coupling renormalization
(the β function), while the second term represents the
RKKY contribution. It is seen that χf, as in Eq. (3), induces
a soft cutoff on the scale TK and the characteristic 1=TK
dependence to the RG flow of this contribution, where TK
is the Kondo scale on the surrounding Kondo sites. The
dimensionless coefficient

y¼−
8W
π2

Im
X
j≠i

e−ikFrij

Nð0Þ2 G
R
c ðrij;Ω¼ 0Þχcðrij;Ω¼ 0Þ ð6Þ

arises from the Fourier transform YðkF; 0Þ and parametr-
izes the RKKY coupling strength. The summation in
Eq. (6) runs over all positions j ≠ i of Kondo sites in
the system. It is important to note that y is generically
positive [24], even though the RKKY correlations χcðrij; 0Þ
may be ferro- or antiferromagnetic. For instance, for an
isotropic and dense system with lattice constant a
(kFa ≪ 1), the summation in Eq. (6) can be approximated
by an integral, and with the substitution x ¼ 2kFjrijj, y can
be expressed as

y ≈
2W

ðkFaÞ3
Z

∞

kFa
dxð1 − cos xÞ x cos x − sin x

x4
> 0: ð7Þ

As a consequence, the RKKY correlations reduce the g
renormalization in Eq. (5), irrespective of the sign of
χcðrij; 0Þ, as one would physically expect.
Universal suppression of the Kondo scale.—The RG (5)

can be integrated analytically [24]. The Kondo scale for
singlet formation on site i is defined as the running cutoff
value where the c-f coupling g diverges. By equivalence of
all Kondo sites, this is equal to the Kondo scale TK on
the surrounding sites j ≠ i, which appears as a parameter in
the β function on the right-hand side of Eq. (5). This
implies an implicit equation for the Kondo scale TK ¼
TKðyÞ in a Kondo lattice, and that it depends on the RKKY
parameter y

TKðyÞ
TKð0Þ

¼ exp

�
−yαg20

D0

TKðyÞ
�
: ð8Þ
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Here, TKð0Þ ¼ D0 expð−1=2g0Þ is the single-ion Kondo
scale without RKKY coupling, and α ¼ lnð ffiffiffi

2
p þ 1Þ. By the

rescaling, u¼TKðyÞ=ðyαg20D0Þ, yc ¼ TKð0Þ=ðαeg20D0Þ,
Eq. (8) takes the universal form (e is Euler’s constant),

y
eyc

u ¼ e−1=u: ð9Þ

Its solution can be expressed in terms of the Lambert W
function [28] as uðyÞ ¼ −1=Wð−y=eycÞ. The inset of Fig. 2
visualizes solving Eq. (9) graphically. It shows that Eq. (9)
has solutions only for y ≤ yc. This means that yc marks a
Kondobreakdownpoint beyondwhich theRGdoes not scale
to strong coupling; i.e., a Kondo singlet is not formed for
y > yc even at the lowest energies. Using the above
definitions, the RKKY-induced suppression of the Kondo
lattice temperature reads TKðyÞ=TKð0Þ ¼ uðyÞy=ðeycÞ ¼
−y=½eycWð−y=eycÞ�. It is shown in Fig. 2. In particular,
at the breakdown point it vanishes discontinuously and takes
the finite, universal value (see the inset of Fig. 2)

TKðycÞ
TKð0Þ

¼ 1

e
≈ 0.368: ð10Þ

Weemphasize that theRKKYparameterydepends ondetails
of the conduction band structure, including band renormal-
izations caused by the Kondo effect (coupling to the heavy-
fermion band). It also depends on the spatial arrangement of
Kondo sites. Subleading contributions toΓcf maymodify the
form of the cutoff function in the RG (5) and thus the
nonuniversal parameter α. However, all this does not affect
the universal dependence of TKðyÞ on y given by Eq. (9).

The critical RKKY parameter, as defined before
Eq. (9), can be expressed solely in terms of the single-
ion Kondo scale

yc ¼
4

αe
τKðln τKÞ2 ð11Þ

with τK ¼ TKð0Þ=D0. Note that [via TKð0Þ ¼
D0 expð−1=2g0Þ and Nð0Þ ¼ 1=ð2D0Þ] this is equivalent
to Doniach’s breakdown criterion [6] Nð0ÞycJ20 ¼ TKð0Þ
up to a factor of Oð1Þ. However, the present theory goes
beyond the Doniach scenario in that it predicts the behavior
of TKðyÞ.
Comparison with experiments.—The present theory

applies directly to two-impurity Kondo systems and can
be compared to corresponding STM experiments [18,19].
In Ref. [18], the Kondo scale has been extracted as the line
width of the (hybridization-split) Kondo-Fano resonance.
In this experimental setup, the RKKY parameter y is
proportional to the overlap of tip and surface c electron
wave functions and, thus, depends exponentially on the tip-
surface separation z, y ¼ yc exp½−ðz − z0Þ=ξ�. Identifying
the experimentally observed breakdown point z ¼ z0 with
the Kondo breakdown point, the only adjustable parameters
are a scale factor ξ of the z coordinate and TKð0Þ, which is
the resonance width at large separation, z ¼ 300 pm. The
agreement between theory and experiment is striking, as
shown in Fig. 3. In particular, at the breakdown point
TKðycÞ=TKð0Þ coincides accurately with the prediction
(10) without any adjustable parameter. In the STM experi-
ment of Ref. [19], the strongest observed suppression ratio
is TKðyÞ=TKð0Þ ¼ 46K=110K ≈ 0.42, again in excellent
agreement with the strongest theoretical suppression of
1=e, considering that in Ref. [19] the RKKY coupling y
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cannot be varied continuously. The detailed analysis of that
experiment will be published elsewhere [29].
Discussion and conclusion.—We have derived a pertur-

bative renormalization group theory for the interference of
Kondo singlet formation and RKKY interaction in Kondo
lattice and multi-impurity systems, assuming that magnetic
ordering is suppressed, e.g., by frustration. The equivalence
of the c-f vertices on all Kondo sites is reminiscent of a
dynamical mean-field theory treatment; however, it goes
beyond the latter in taking the nonlocal RKKY contribu-
tions into account. Equations (8) or (9) represent a
mathematical definition of the energy scale for Kondo
singlet formation in a Kondo lattice, i.e., of the Kondo
lattice temperature TKðyÞ. The theory predicts a universal
suppression of TKðyÞ and a breakdown of complete Kondo
screening at a critical RKKY parameter y ¼ yc. At the
breakdown point, the Kondo scale takes a finite, universal
value TKðycÞ=TKð0Þ ¼ 1=e ≈ 0.368, and vanishes discon-
tinuously for y > yc. In the Anderson lattice, by contrast to
the Kondo lattice, the locality of the f spin no longer
strictly holds, but our approach should still be valid in this
case. The parameter-free, quantitative agreement of this
behavior with different spectroscopic experiments [18,19]
strongly supports that the present theory captures the
essential physics of the Kondo-RKKY interplay.
The results may have profound relevance for heavy-

fermion magnetic QPTs. In an unfrustrated lattice, the
partially screened local moments existing for y > yc must
undergo a second-order magnetic ordering transition at
sufficiently low temperature. This will also imply a power
law divergence of the c electron correlation χc in Eq. (2).
We have checked the effect of such a magnetic instability,
induced either by the ordering of remanent local moments
or by a c electron SDW instability: the breakdown ratio
TKðycÞ=TKð0Þ will be altered, but must remain nonzero.
The reason is that the inflection point of the exponential
function on the right-hand side of Eq. (9) (see Fig. 2) is not
changed by such a divergence and, therefore, the solution
ceases to exist at a finite value of TKðycÞ. This points to an
important conjecture about a possible, new quantum critical
scenario with Kondo destruction: the Kondo spectral
weight may vanish continuously at the QCP, while the
Kondo scale TKðyÞ (resonance width) remains finite,
both as observed experimentally in Ref. [18]. Such a
scenario may reconcile apparently contradictory experi-
mental results in that it may fulfill dynamical scaling, even
though TKðycÞ is finite at the QCP. The present theory sets
the stage for constructing a complete theory of magnetic
ordering and RKKY-induced Kondo destruction.
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