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In disordered systems, the hopping conductivity regime is usually realized at low temperatures where
spin-related phenomena differ strongly from the cases of delocalized carriers. We develop the unified
microscopic theory of current-induced spin orientation, spin-galvanic, and spin-Hall effects for the two-
dimensional hopping regime. We show that the corresponding susceptibilities are proportional to each other
and determined by the interplay between the drift and the diffusion spin currents. Estimations are made for
realistic semiconductor heterostructures using the percolation theory. We show that the electrical spin
polarization in the hopping regime increases exponentially with the increase of the concentration of localization
sites and may reach a few percent at the crossover from the hopping to the diffusion conductivity regime.
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Introduction.—Spin physics is a rapidly growing area of
research in condensed matter science aimed at the creation,
manipulation, and detection of spins in various systems [1].
Important and fundamentally interesting results, also prom-
ising for possible future applications, have been obtained in
semiconductors and semiconductor nanostructures [2]. The
cornerstones in semiconductor spintronics are spin orien-
tation, spin transfer, and spin readout. Remarkable progress
has been achieved in the last decade’s experiments in all
three directions including ultrafast optical spin injection
[3.4], low-dissipation spin current manipulation [5], and
nearly nondestructive spin measurements [6]. A challeng-
ing problem in the spin physics is how to affect the spin by
instantaneous nonmagnetic methods, in particular, by
electric fields [7,8]. The key to the electrical spin control
is the spin-orbit interaction [9], which linearly couples spin
and momentum components of carriers. It allows for the
current-induced spin polarization (CISP) — a phenomenon
where the electric current flow is accompanied by a
homogeneous orientation of carrier spins. This problem
is mostly studied in semiconductors, see Ref. [10] for
review. Recent progress in the field is related to precise
electrical control of spin in semiconductor epilayers
[11,12]. The problem of CISP in two-dimensional (2D)
semiconductor heterostructures is investigated theoretically
in detail, including nonlinear regimes of CISP [13,14].

There are two more phenomena closely related to CISP.
The first one is a generation of an electric current in systems
with a nonequilibrium spin polarization referred to as the
spin-galvanic effect (SGE) [15]. SGE has been studied in
various 2D semiconductor systems where nonequilibrium
spin polarization has been created by means of optical
excitation [16]. One more phenomenon is the spin-Hall
effect (SHE) consisting in a generation of the spin current
in the presence of the electric current [2]. All three effects
are phenomenologically introduced as follows:
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s = 6cispE, J = 65GES, J =6sueE. (1)
Here, s is the nonequilibrium spin polarization, E and j are
the electric field and electric current density, and J is the
component of the spin current describing the flux density of
spins oriented along the normal to the 2D plane.

Despite a deep investigation of CISP, SGE, and SHE, all
previous activities were devoted to delocalized electrons,
which weakly feel the static disorder as a source of rare
momentum scattering. However, the role of the disorder is
drastically enhanced at low temperatures when carriers are
localized in minima of potential energy. In contrast to free
electron systems, the localized carriers preserve their spin
coherence for hundreds of nanoseconds due to suppression
of the Dyakonov-Perel spin relaxation mechanism [17].
The record spin coherence times have been demonstrated
for semiconductor quantum dot structures [18-20]. For this
reason, the spin properties of localized electrons attract
rapidly growing attention. Application of an electric field to
such systems induces directed hops of electrons between
localization sites, so called hopping conductivity regime.
Spin relaxation [21-24], spin dynamics [25,26], spin noise
[27,28], and ac spin-Hall effect [29] have been recently
studied in the hopping regime. However, CISP, SGE, nor dc
SHE have been considered. In this Letter, we fill this gap
and describe the effects of the spin, electric current, and
spin current mutual conversion in the hopping regime.

Model.—The effective electron Hamiltonian describing
spin-orbit interaction in 2D heterostructures grown along
[001] direction has the form

HSO = ﬂﬂl/o-ﬂkl/ = ﬁxyaxky + ﬁyxdyk)r (2)
Here, x||[110] and y||[110] are the coordinates in the

2D plane, o6, are the Pauli matrices, k = —iV, and
B, are spin-orbit constants caused by both bulk- and
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FIG. 1. Tlustration of CISP in the 2D hopping regime: electrons
rarely hop between localization sites (green areas). In the
presence of electric current j,, the quantum interference between
the direct and indirect hopping paths, shown respectively by
magenta and blue arrows, leads to spin polarization S,.

structure-inversion asymmetry [16,30]. We consider a 2D
ensemble of electrons localized at random sites in a weak
dc electric field, see Fig. 1. The 2D concentration of carriers
n is assumed to be much smaller than the concentration
of sites n,. This situation is realized, for example, in
ensembles of weakly charged quantum dots or in n-doped
quantum wells, compensated by p doping of barriers (D° or
D~ centers). Note that our theory can be equally applied to
the ensembles of holes, but the electron tunneling between
the sites is facilitated as compared with holes because the
effective mass in the conduction band is, as a rule, smaller
than in the valence band.

A microscopic origin of CISP, SGE, and SHE in the
hopping regime is the spin-orbit interaction (2). It results in
the precession of electron spins during the hops. The
electron Hamiltonian in the basis of localized states has
the form [29]

H, = Ze, CisCio + Z Z I ¢l cg. (3)

lj oo’

Here, cja(ci,,) are the creation (annihilation) operators of an
electron at the site i, with the spin projection ¢ = +1/2 on
the z axis, being the normal to the 2D plane, and we neglect
the doubly occupied states, assuming the Hubbard energy
to be infinite. The site energies consist of three contribu-
tions: ¢; = E, + U; — eE - R;, where E, is the binding
energy assumed to be equal for all sites, U; is the
fluctuating electrostatic potential energy at the site, and
the last term describes the potential in the external electric
field for the site with the 2D coordinate R;. The energies U;
are broadly distributed, and the variable-range hopping
regime is realized [31]. The second term in Eq. (3)
describes spin-dependent hopping with the amplitudes
[17,29,32]

= mp(R; —R))/1*,  (4)

where J;; are spin-independent hopping amplitudes
between sites i and j, and m is the electron effective mass.

Kinetic equation.—Electron transport in the studied spin-
orbit coupled system is described by a kinetic equation for
the spin density matrix. Decomposing the on-site density

matrix as p; = n;/2 + 6 - S;, we derive a system of coupled
equations for the site occupations n; and the spins S;
[33,34]:

n; :Zlij+Z(Aij'Sj_Aji'Si)7 (5a)
j j
ZI

Here, I;; = n;/t;; — n;/7;; is the particle flow between sites
iand j, w1th 7;; being the hopping time from the site i to the
site j. The second sum in Eq. (5a) represents the source of
an electric current induced by a nonequilibrium spin
polarization being the precursor of SGE.

The left hand side of Eq. (5b) has the form of the Bloch
equation, with the effective frequency of spin precession
during the hop Q;; = 2d;;/7;;, and the on-site phenom-
enological spin relaxation time 7, caused by the hyperfine
interaction. This time is shorter than Dyakonov-Perel spin
relaxation time in the hopping regime [45], and for the sake
of simplicity, we neglect the possible nonexponential spin
relaxation dynamics. The spin current flowing from the site
Jj to the site i, I¥;, is a sum of two contributions

S; +Zs xgu+ Z Gn;+Gjn;). (5b)

l]’

S; S;
Iy=—t——4+Wyn,; -
T T

The first two terms describe the spin diffusion, while the
latter terms arise due to a difference in spin-conserving
tunneling rates for electrons with spins oriented along (1)
and opposite ({) to the axis a: W¢; = (W44 — W )/2. This
contribution clearly leads to a spatial separation of electrons
with opposite spins in the static electric field, which is a
dc SHE.

The last term in Eq. (5b) describes the spin generation. It
can be expressed via a difference of spin-flip probabilities
during the hops as Gf; = (W — W 4)/2. We note that the
kinetic coefficient Af; can also be presented as
2(Wyy + Wy =W — Wy, ), thus allowing us to find a
fundamental relation between the kinetic coefficients

Aij = 4(Wij - Gij)- (7)

At the microscopic level, the spin dependence of the
tunneling rates appears due to an interference of the direct
hopping path with the hopping through an auxiliary site
[29,32,46,47]. An arbitrary triad of localization sites is
shown in the center of Fig. 1. The matrix element of
tunneling between the sites 1 and 3 up to the second order
in hopping amplitude is equal to

j31+f32J21 1+ J3J91 il 6 gidy 6 pmiday 6 )

JSIAEIZ
(8)
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where AE), is the energy difference between states 1 and 2,
including the phonon energy. Because of noncommutativ-
ity of Pauli matrices, the second term in the brackets is not
reduced to a scalar: The electron spin orientation is changed
after travel over the closed path. This is due to the Berry
curvature [9,48] arising from the inversion symmetry
breaking in hopping Hamiltonian [49]. Note that the paths
1 -2 — 3 and 1 — 3 interfere because the same phonons
are emitted or absorbed at these paths [34]. As a result, the
hopping matrix element is essentially spin dependent.
Therefore, the kinetic coefficients IC;; (K = A, G, W) can
be presented as a sum over the auxiliary sites
Kij = > _1Kixj» and the relation (7) holds for Ky, as well.

Microscopic calculation shows that, in accordance with
the time reversal symmetry, only doubly resonant hops
contribute to dc spin effects [34]. The kinetic coefficients
read

Gij = 30uAij XﬂARiijwAz)’ (9a)

~ ~ h2
Wy, = Ou,Tr(f?) <Aikj X B(Rji +Rj) — 3ZAikj)v
(9b)

whereR;; = R; — R;,A;; = Ry; x R;;/2is the oriented area
of the triad, and Qj; is the constant determined by the
hopping times and hopping amplitudes between the sites [34].
We note that the spin separation (W7, j) appears in the second
order in the spin-orbit interaction, while the spin generation
rate and spin galvanic current are cubic in the spin splitting.

Results.—The CISP and SGE can be conveniently
related to the spin current J flowing in the system.
Indeed, the electric current leads to the generation of the
spin current due to the SHE, Fig. 2(a). Then, the spin
current is converted to spin polarization. The effects of
mutual spin and spin current conversion were introduced
for free electrons in Ref. [42] by Kalevich, Korenev, and
Merkulov and can be referred to as the KKM effects [50].
For localized carriers, it is illustrated in Fig. 2(b): in the
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FIG. 2. Microscopic mechanism of CISP. (a) Electric current
flow leads to the drift spin current J4, due to the SHE. In the
strongly inhomogeneous system under study, it is partially
compensated by the diffusion spin current 7 4. (b) Spin current
J, accompanied by the spin precession in spin-orbit field Qg,,
results in electron spin polarization S, due to the KKM effect.

presence of spin current, spin-up electrons (S,) and spin-
down electrons (S;) hop in opposite directions and expe-
rience spin precession with frequency g, in opposite
directions, which leads to spin polarization S,. Formally,
the KKM effect in the hopping regime can be derived from
Eq. (5b) by taking the sum over all sites:

2t .m
nh?

where the spin current is defined as [29,51]

l S
T =32 Rl
l

s = e, xpJ, (10)

(1)

and e, is a unit vector along the z axis.

The spin-galvanic effect can be treated in a similar way,
see Fig. 3. Spin polarization S, due to the spin-orbit
interaction leads to the spin current J (inverse KKM
effect). In turn, the spin current induces the electric current
Jx due to the inverse spin-Hall effect (ISHE). Therefore,
both CISP and SGE are intimately related to the spin
current and can be decomposed into two steps, SHE +
KKM and inverse KKM + inverse SHE, respectively. In
fact, CISP and SGE are reciprocal to each other due to time
reversal symmetry [52].

The spin current defined by Eq. (11) consists of two
contributions [53]: diffusion spin current J g and drift
spin current J 4., which correspond to the two terms of
Eq. (6). Since the system under study is strongly inhomo-
geneous, the drift spin current leads to spin separation in the
steady state. This, in turn, induces the diffusion spin current
in the opposite direction as shown in Fig. 2(a). Neglecting
the spin relaxation, these two contributions completely
cancel each other, so J = J 4t + J 4 18 zero. The on-site
hyperfine-induced spin relaxation diminishes spin separa-
tion and upsets the balance; therefore,

1
J = T—SZRisg.

This expression shows that in the limit of infinite
nuclei-induced spin relaxation time, the total spin current

(12)
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FIG. 3. Mechanism of SGE. (a) Spin polarization leads to the drift
spin current J 4. due to the inverse KKM effect. It is partially
compensated by the diffusion spin current, J 4. (b) Spin current J
results in the electric current j, due to ISHE.
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vanishes. However, the CISP is proportional to the product
of the spin relaxation time and the spin current, see
Eq. (10), so it always has a finite value. The interplay
between drift and diffusion spin currents is illustrated in
Fig. 4. Usually, 7, is much longer than the characteristic
hopping time 7;; so the total spin current is less than both
Jar and T gigy.

The hopping amplitude exponentially decreases with
the increase of a distance between the sites,
Jij ~exp(—R;;/a,), where the localization radius a; is
assumed to be the same for all sites. This gives an
opportunity to make a quantitative analysis of the spin
effects in the hopping regime where nsa%7 < 1. To that end,
we extend the percolation theory [31] to account for spin
degrees of freedom. The electric current in the hopping
regime flows only in the so-called percolation cluster,
where the distances between the sites are the smallest
and the potential energies are close to each other. The
current-induced spin polarization takes place only in the
vicinity of this path. The interference between the hopping
paths also drops rapidly down at the distances larger than
a,. Since the electric current is the same in the whole
cluster, the main contribution to spin generation is given by
the smallest triads of sites having the size ~a; [54].
Therefore, the CISP conductivity can be presented as [34]

Geisp = TsTr(ﬁAz)ﬂATPf(ans)- (13)

Here, P = (ma,,/h*)3hnga,/(endytop), p is the resistivity,
Jo and 7, are the characteristic hopping integral and time
for the distance ~a;, and f(n,,7,) is a dimensionless
function which tends to a finite value as n, goes to zero.

The spin-galvanic current can be similarly obtained from
the kinetic equation (5a). It is generated also in small triads of
sites and flows mainly in the percolation cluster. The calcu-
lation yields the following result for the SGE response [34]:

GsGE = 4Tr(ﬁ2)ﬁTPkBTnf(ns, 7). (14)
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FIG. 4. Drift, diffusion, and total spin currents (in arbitrary
units) as functions of hyperfine-induced spin relaxation time for
nga? = 0.01. The black curve shows the function f(n,,z) in
absolute units.

Here, the function f coincides with that for CISP, Eq. (13), see
Supplemental Material [34]. This coincidence comes from the
Onsager relation taking place for CISP and SGE susceptibil-
ities due to reciprocity of these two effects [43,44]. We have
analytically calculated the function f (ny, 7,) for the model of a
regular triangle [34].

The spin-Hall conductivity can be deduced from
Egs. (10) and (13):

nnP

GsHE :ﬂT(ez Xﬂ) f(I’LS,TS). (15)
We stress that, in strongly inhomogeneous systems,
the drift spin current is always accompanied by the
diffusion spin current, and therefore, the spin-Hall
conductivity relates the applied electric field to the total
spin current 7. This conductivity vanishes in the absence
of hyperfine-induced spin relaxation. However, the spin
separation is caused only by the drift spin current, which
does not depend on spin relaxation, and therefore, can be
found as

nnP
m

Ta=—b"(e. x fE) "= f(n,.0).  (16)

The possibility of intrinsic spin current and spin separation
for free electrons was intensively debated, for review see,
e.g., Refs. [48,55]. It was found that the intrinsic spin-Hall
effect is possible at the edges of the sample [56,57] or in
mesoscopic systems [58]. In the hopping regime, the electric
current flows in a narrow quasi-one-dimensional cluster.
Therefore, the intrinsic spin current is expected to be nonzero
in the strongly inhomogeneous system under study.

The extrinsic spin-orbit coupling can also lead to the spin
orientation [50] and spin relaxation [53] in analogy with
Elliott-Yafet mechanism for free electrons. Extrinsic spin-
orbit coupling also contributes to the spin-Hall conductivity
similarly to the hyperfine interaction, see Eq. (12).
However, the extrinsic spin-orbit coupling is parametrically
small in the hopping regime since it is determined by three-
center integrals [23,59].

In order to make an estimation of CISP by Eq. (13), we
present the hopping resistivity as p = pgexp (21./a;),
where /. is the maximum distance between neigh-
boring sites in the percolation cluster. We adopt the model
where the hopping amplitudes are J;; = J,exp(—R;;/ay)
and 7;; = 79exp(2R;;/a,). Under these assumptions,
l. = 1.2/,/n;. The numerical simulation of spin dynamics
in the hopping regime was performed on the square sample
with 5 x 10° sites [34].

All of the three effects under study are described by a
single dimensionless function f and obey the common
dependence on the site concentration and on the spin
relaxation time. The spin current as a function of 7(/7;
is shown in Fig. 4 for the small concentration nsa%7 = 0.01.
The drift and diffusion contributions to the spin current are
shown separately. As expected, in the limit of slow spin
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relaxation, the drift and diffusion currents completely
cancel each other out, so the total spin current is zero.
We stress that the spin separation is still present in this limit
and represents the intrinsic SHE. As the spin relaxation rate
increases, the diffusion spin current diminishes, and in the
limit 7, = 0, only the drift spin current survives in agree-
ment with Eq. (16). For small concentrations na; < 0.02,
we find a finite value f(n,,0)~ 2.0, so the drift spin
current is independent of n; in this limit.

For typical parameters, n, = 20n =2 x 10! cm™2,
ay=10nm, Jy=10meV, A, =p, =10meVA,
m=0.1mg, E=1kV/cm, p;=50kOhm [60],
7o = 10 ps, and 7, = 100 ns, we obtain a small value
s ~3 x 107. However, increase of n, results in drastic
enhancement of the electrical spin polarization. At the
crossover from hopping to the diffusion conductivity, we
get a relatively large value of CISP s ~ 1% easily detectable
in experiments.

Conclusion.—We have proposed a unified description of
CISP, SGE, and SHE in the hopping regime. Based on
numerical simulations and percolation theory, we made
estimations of the corresponding susceptibilities. Because
of the suppression of spin relaxation in the hopping
conductivity regime, the spin effects are underlined; in
particular, the degree of current-induced spin polarization
for real structures can be large.
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