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Periodically driven noninteracting systems may exhibit anomalous chiral edge modes, despite hosting
bands with trivial topology. We find that these drives have surprising many-body analogs, corresponding to
class A, which exhibit anomalous charge and information transport at the boundary. Drives of this form are
applicable to generic systems of bosons, fermions, and spins, and may be characterized by the anomalous
unitary operator that acts at the edge of an open system. We find that these operators are robust to all local
perturbations and may be classified by a pair of coprime integers. This defines a notion of dynamical
topological order that may be applied to general time-dependent systems, including many-body localized
phases or time crystals.
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Introduction.—Time-dependent quantum systems can
support a host of novel phenomena that are impossible
to realize with a static Hamiltonian. These include topo-
logical adiabatic cycles [1–6], Floquet analogs of topo-
logical insulators [7–19], novel examples of driven
symmetry-protected topological phases (SPTs) [20–24],
and phases which exhibit spontaneous symmetry breaking
in the time domain, dubbed time crystals or π-spin glasses
[20,25–28]. In addition to being of theoretical interest,
much progress has been made towards realizing Floquet
systems in the laboratory [29–35].
Many of these unusual Floquet phases are distinguished

by their anomalous edge behavior: while a periodic drive
may have no overall effect on a closed system, its action at a
boundary can be nontrivial. This is a kind of holography
that signifies the presence of an inherently dynamical type
of order. In this Letter, we introduce a set of 2D drives that
generate dynamical topological order of this form in
generic systems of interacting bosons, fermions, or spins.
The topological order manifests as robust chiral edge
modes at the boundary of an open system. These edge
modes are stable to all perturbations and cannot be
generated by a 1D Hamiltonian.
We study these drives by considering the action of the

unitary evolution restricted to the edge of the system,
finding that it may be classified by a pair of coprime
integers. Through homotopy arguments, this defines a
robust topological invariant that may be applied very
generally to classify Floquet many-body phases [for exam-
ple, by incorporating many-body localization (MBL) [36] ].
However, our approach may also be used to provide a
topological classification of more exotic unitary evolutions,
including those corresponding to time crystals or those with
only partial MBL.
As motivation, we recall that two fundamental examples

of SPT phases are those of class D, protected by particle-
hole symmetry, and class A, protected by U(1) charge

conservation. In the time-dependent case, a 1D class D
system has a Z2 × Z2 classification [8,10,16], which
persists in the presence of interactions [21,23,24]. In 2D,
class A corresponds to the integer quantum Hall effect
(IQHE) [54], which has a well-defined (static) integer
classification that also persists in the presence of inter-
actions [55]. A nontrivial driven system belonging to
class A (without interactions) was given in Ref. [9], which
shows IQHE-like chiral edge modes at the boundary of a
2D lattice, even though the bulk band has a Chern number
of zero. This model is stable to disorder [17] and has
recently been realized using photonic waveguides [35].
In the first section of this Letter, we examine the effect of

interactions on this drive by constructing its many-body
analogs, taking into account the particle statistics. We
consider the anomalous action of the drive at the edge
and find that charge conservation protects this against any
local charge-conserving 1D perturbation. The structure of
these particle-based models motivates a more general set of
exchange models, which we introduce in the context of spin
systems. We find that these also exhibit a robust edge
action, and we provide a classification scheme for their
anomalous behavior.
Interacting class A drive.—We first introduce a

unitary drive in class A that reduces to the drive of
Ref. [9] for a single-particle system. We recall that
the unitary evolution operator for a Hamiltonian HðtÞ is
UðTÞ ¼ T exp ð−i R T

0 HðtÞdtÞ, where T is the time-
ordering operator, and T is the period of evolution. We
are specifically interested in unitary loops, which we define
to be an evolution which, in a closed system, satisfies
UðTÞ ¼ I. In the corresponding open system, however,
UðTÞ will not necessarily be proportional to the identity.
The component of UðTÞ that acts in the vicinity of the
boundary, which we call the effective edge unitary, char-
acterizes the anomalous edge action of the evolution.
Although this class of unitaries may seem somewhat
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restrictive, a classification of unitary loops in fact gives a
very general classification of dynamical topological order
in the space of unitary evolutions (see Supplemental
Material [36] and Ref. [24]).
The drive in Ref. [9] consists of four principal steps,

each of which generates hopping across a different set of
neighboring bonds, as shown in Fig. 1(a). After the
complete drive, a particle in the bulk returns to its initial
position, but a particle located at certain positions on the
edge is transported along the boundary, represented picto-
rially in Fig. 1(b). For simplicity, we initially work with
hardcore bosons. In this case, the unitary that generates a
hop between two sites is

UB
rr0 ¼1þb†r0brþb†rbr0 −b†rbr−b†r0br0 þ2b†r0br0b

†
rbr; ð1Þ

where b†r creates a boson on site r and satisfies ½br; b†r0 � ¼
δr;r0 and ðb†rÞ2 ¼ 0. It may be verified that this operator is
unitary and that it acts on a general two-site state as

UB
rr0 ðb†rÞnrðb†r0 Þnr0 j0i ¼ ðb†rÞnr0 ðb†r0 Þnr j0i; ð2Þ

with nr; nr0 ∈ f0; 1g. Labeling the two sublattices as A and
B (filled and open circles, respectively, in Fig. 1), and
setting the intersite spacing to one, each step of the unitary
drive may be writtenUB

j ¼ Q
r∈AU

B
r;rþbj

, with b1 ¼ −b3 ¼
ð1; 0Þ and b2 ¼ −b4 ¼ ð0;−1Þ. The complete unitary drive
is then UB ¼ UB

4U
B
3U

B
2U

B
1 , which can be written as the

product of evolutions by four local Hamiltonians.
Within each step of the drive, the two-site operators UB

r;r0
act on disjoint pairs of sites and commute. By tracking the
position of a particular particle across all steps of the
unitary, it can be verified that the action of the complete
drive translates particles as in Fig. 1(b). On a many-body
product state, the unitary acts as a permutation of particle
occupation numbers at the edge. Since the unitary acts
identically on any product state, the permutation is also
well defined for superposition states.
The effective edge unitary of the drive may be read off

directly from the complete time evolution operator. Writing
a generic many-body product state as jn1; n2;…i, where nj
gives the boson occupation number on site j, the unitary

drive maps product states onto product states through the

relation jn01; n02;…i ¼ UB;fn0g
fng jn1; n2;…i. From the discus-

sion above, the matrix elements are

UB;fn0g
fng ¼

Y

j∈bulk
δnj;n0j

Y

j∈edge
δnj;njþ1

0 ; ð3Þ

where the sites at the edge have been indexed appropriately
[56]. The effective edge unitary UB

eff is characterized by the
matrix elements of the second factor.
It is natural to ask whether this many-body generaliza-

tion applies also to fermions. We define fermionic unitary
operators, UF

rr0 , U
F
j , and UF by replacing b†r with f†r in

the bosonic definitions above. The operators f†r satisfy
ffr;f†r0g¼ δr;r0 and have the occupation number-exchanging
property

UF
rr0 ðf†rÞnrðf†r0 Þnr0 j0i ¼ ðf†rÞnr0 ðf†r0 Þnr j0i; ð4Þ

with nr, nr0 ∈ f0; 1g. In this case, the presence of the
vacuum state j0i is important. For a many-body Slater
determinant, anticommuting the relevant fermion operators
so that they are adjacent to the vacuum will introduce an
overall sign, which depends on the occupation of other
lattice sites. In this way, the fermionic drive UF, acting on
a closed system, may return a Slater determinant state to
itself or to minus itself; in an open system, the unitary
translates particles at the edge only up to a sign. The
fermionic matrix elements are related to their bosonic
counterparts through UF;fn0g

fng ¼ ð−1ÞsUB;fn0g
fng , where s is

an integer that depends nonlocally on fn0g and fng. For
a superposition state, the unitary may introduce different
signs for different components.
Nevertheless, the fermionic Floquet drive UF has many

interesting properties and also exhibits anomalous edge
behavior. Any charge distribution at the edge of a many-
body state will be translated around the boundary.
Furthermore, if the drive is run twice (which we call the
“doubled fermion drive”), then its action in the bulk is
exactly the identity, since the sign factors square to one.
This is reminiscent of fermionic Hamiltonians that avoid
the sign problem. In this case, the bulk and edge behavior
can be disentangled, and an effective edge unitary can be
defined [36].
The drives described above have been constructed to

give the desired edge behavior, and one might ask whether
they are truly representative of a finite parameter space. We
now argue that this is the case, and that the anomalous
action is stable to local unitaries at the edge. We initially
consider the bosonic version of the drive. To proceed, we
consider the action of the effective unitary restricted to
the 1D edge, which we take to have length 2L. Acting
on a product state, we find UB

eff jn−L; n−Lþ1;…; nLi ¼
jnL; n−L;…; nL−1i, shown pictorially in Fig. 2(a). We will
now assume that this unitary may be generated by a local
1D charge-conserving Hamiltonian HðtÞ that acts for a

FIG. 1. (a) Four steps in the anomalous Floquet drives
considered in the main text, based on the model of Ref. [9].
(b) Representation of the action of the complete unitary drive. See
main text for details.
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finite time T at the edge, and we will show that this leads to
a contradiction [57].
Since HðtÞ is local, the complete drive has a maximum

Lieb-Robinson velocity for the speed of information
propagation vLR [58]. We can obtain an open version of
the drive ~UB

op by cutting open the 1D edge and consistently
excluding all terms that connect sites across the cut. Due to
the Lieb-Robinson bound, this cannot affect the unitary
evolution outside of a region Δj ≈ vLRT near the left and
right ends. For a long chain, with L ≫ vLRT, we expect the
unitary far from the cut to act as before.
Now, assume that in the large length of chain from site

j ¼ −M to site j ¼ M, the action of the unitary is
unaffected by the cut, as shown in Fig. 2(b). Since the
charge in the bulk is transported uniformly by one lattice
site through the action of the unitary, it follows from charge
conservation that the charge initially in sites f−L;−Lþ
1;…;−M − 1g∪fM;M þ 1;…Lg must equal the final
charge in sites f−L;−Lþ1;…;−Mg∪fMþ1;Mþ2;…Lg.
However, the available space for charge on the right is
reduced by this evolution, while the space for charge on the
left is increased. The only way that total charge can be
conserved for any initial charge configuration is if particles
are transferred from the right edge to the left edge to
address any imbalance. This distance can be made arbi-
trarily large by increasing the system size, which shows
that in general, ~UB

op must be nonlocal (or that T must be
infinite). We conclude that the anomalous action of UB

eff
cannot arise as result of a local 1D HamiltonianHðtÞ acting
for a finite time.
For fermionic models, this argument shows that there is

no local 1D unitary which brings the action of the open
system to that of the closed system. Furthermore, for the
doubled fermion drive, the above bosonic argument can be
straightforwardly applied to demonstrate the anomalous
nature of the edge unitary.
Exchange models.—The models described above may be

generalized straightforwardly to spin models or indeed to

any system where the on-site Hilbert spaces are equivalent.
Instead of particle hops, the building blocks are now
pairwise exchanges of local states. The exchange version
of Eq. (1) is

U↔
r;r0 ¼

X

α≠β
jr; βi ⊗ jr0; αihr; αj ⊗ hr0; βj þ δαβIrr0 ; ð5Þ

where α, β ∈ Hr take values in the on-site Hilbert space.
In the above, jr; αi indicates that the state at site r is α.
In each step of the drive, the tensor product of the

exchange operation is taken over one of the four sets of
neighboring bonds shown in Fig. 1(a), U↔

j ¼ ⊗
r∈A

U↔
r;rþbj

,

with the complete drive given by U↔ ¼ U↔
4 U↔

3 U↔
2 U↔

1 .
Each step consists of a product of local commuting terms,
and so can be generated by a local Hamiltonian. The
complete action of the drive may again be represented as
in Fig. 1(b), where the arrows now indicate the trajectory
of a particular on-site state through the lattice. Acting on a
product state, U↔ permutes the on-site states through a
cyclic permutation at the edge, an action that is also well
defined for superposition states. This may be encapsulated
in an effective edge unitary U↔

eff.
A natural setting for this type of anomalous drive is a

lattice of spins. If the on-site Hilbert space corresponds to
Z2, then the model maps formally onto the hardcore boson
model given previously. More general spin models may
be mapped onto bosonic models that allow a different
(but finite) number of particles per site. The Hamiltonians
that generate these drives conserve the total boson number,
and their edge action can be shown to be anomalous using
the arguments given previously.
Stability of edge unitaries.—We now allow for the

possibility of perturbations that do not conserve charge.
In these cases, we can appeal to more general information
theoretic ideas to show that the effective edge action of the
Floquet drive is still anomalous. Roughly speaking, the
anomalous edge drives have a chiral flow of information
(and not just charge), which we will show cannot occur
through a local 1D unitary evolution.
As before, we begin by assuming that U↔

eff may be
generated by a local Hamiltonian HðtÞ, and so there is a
maximum velocity vLR at which information can flow.
We cut open the chain to obtain the putative open system
unitary ~U↔

op, which should reproduce the permutation
action in the bulk of the chain away from the cut.
For simplicity, we will assume that the edge region (of

size vLRT) consists of a single site on either side of the cut
(for the more general case, see the Supplemental Material
[36]). With this setup, the action of ~U↔

op on a many-body
state is to translate the on-site states to the right by one
lattice site, as shown in Fig. 3(a). The unitary ~U↔

op maps
product states onto product states through the matrix

elements jα0−L; α0−Lþ1;…; α0Li ¼ Ufα0g
fαg jα−L; α−Lþ1;…; αLi,

where jfαgi and jfα0gi are initial and final states, respec-
tively. These matrix elements have the form

FIG. 2. (a) Permutation of boson occupation numbers at the
edge under the anomalous Floquet drive. (b) Action of the
putative open 1D unitary ~UB

op. The regions marked L and R
are within a distance vLRT of the cut. See main text for details.
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Ufα0g
fαg ¼

YL−1

j¼−L
δαj;α0jþ1

fðfαg; fα0gÞ; ð6Þ

where the final factor describes the relation between states
αL and α0−L.
We now relabel the site indices in the final state through

j → j0 ¼ jþ 1 in the range −L ≤ j0 ≤ L, which makes the
permutation diagonal [see Fig. 3(b)]. In this new basis, the
matrix elements of the unitary are

U0fα0g
fαg ¼ δαv ;α0vfðαv ¼ α0v; αL; α0LÞ; ð7Þ

where we have used the shorthand notation v to represent

the sites from −L to L − 1. From the unitarity of U0fα0g
fαg , it

may be shown that the factor fðαv; αL; α0LÞ is also unitary.
The unitary evolution ~U↔

op therefore relates state α0L to αL
through an (unspecified) unitary operation.
Now, the unitary evolution as a whole preserves infor-

mation. The diagonal factor in U0fα0g
fαg shows that informa-

tion in the bulk is translated, while the remaining factor
fðαv; αL; α0LÞ shows that the information in state αL is
transferred to state α0L unitarily. However, in the original
basis, these states were separated by an arbitrarily large
distance, and transferring information across this distance
in a finite time would violate the Lieb-Robinson bound. In
this way, the anomalous edge action of a general exchange
model is robust and cannot be created or destroyed by a 1D
unitary drive of the form ~U↔

op.
We can construct more general drives by stacking

together several systems (and thereby acting on a tensor
product Hilbert space) or by running several drives in
sequence. Drives generated in this way are not necessarily
independent, as we now show.
The action of a general exchange drive can be charac-

terized by a permutation of the form jα1; α2;…; αLi →
jαL−pþ1; αL−pþ2;…; αL−pi, which moves each state on the

edge to the right by p lattice sites. If the on-site Hilbert
space has dimension k, then we write this right-moving
permutation as Rðp; kÞ. Left-moving permutations may
similarly be written Lðp; kÞ.
We note that running the drive Rðp; kÞ q times is

equivalent to running the drive Rðqp; kÞ once. Secondly,
we note that by grouping together the first p lattice sites
into a single effective site, the drive Rðp; kÞ is equivalent to
the drive Rð1; kpÞ [59]. This regrouping of sites is equiv-
alent to the stacking together of p drives on different
Hilbert spaces with dimension k. Stacking more general
drives leads to the equivalence

Rðp; kÞ ⊗ Rðp0; k0Þ≡ R(1; kpðk0Þp0
): ð8Þ

In this way, any right-moving drive is equivalent to a drive
Rð1; nÞ, where n is a positive integer. Using the same
methods as above, it is straightforward to show that drives
corresponding to different n are inequivalent [i.e., Rð1; nÞ
cannot be obtained from Rð1; n0Þ through a local 1D unitary
evolution for n ≠ n0].
In the Supplemental Material [36], we show that by also

including left-moving permutations, a generic permutation
can be brought into the form Lð1; n0Þ ⊗ Rð1; nÞ, where n
and n0 are coprime integers. A general exchange drive may
therefore be characterized by a pair of integers, describing
left- and right-moving components of the permutation. A
trivial drive can be reduced to the form n ¼ 1, n0 ¼ 1.
Again using the methods above, all of these drives can be
shown to be inequivalent.
In general, an effective edge unitary Ueff will not

correspond to a pure exchange drive. From our results, it
follows that any effective edge unitary that is equivalent to
an exchange effective edge unitary can be characterized by
coprime integers n, n0. We conjecture that this classification
is also complete, i.e., that every effective edge unitary
belongs to one of these equivalence classes.
Conclusions.—In summary, we have presented a many-

body version of the anomalous Floquet drive of Ref. [9],
which is applicable to both bosonic and fermionic systems.
The action of the drive leads to the robust chiral propa-
gation of charge at the boundary of an open system.
Anomalous edge behavior arises more generally in
exchange models, where spin states, for example, are
swapped between Hilbert spaces on neighboring sites.
Finite bounds on the propagation of information mean
that classes of anomalous edge behavior are stable to all
local perturbations.
We showed that exchange drives may be uniquely

characterized (up to equivalence) by a pair of coprime
integers, and we conjectured that all effective edge unitaries
are equivalent to one of these exchange drives. Using
homotopy arguments [24,36], these integers provide a
topological classification of Floquet systems, including
MBL phases and time crystals. Our work raises a number of

FIG. 3. (a) Permutation of on-site states under the action of
~U↔
op, assuming the 1D chain is cut between sites L and −L.

(b) Relabeling of lattice sites so that the permutation is diagonal
away from the cut.
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interesting questions, which we hope will encourage further
theoretical and experimental efforts. For instance, it would
be interesting to study the interacting analogs and stability
of other single-particle Floquet topological insulators.

We thank D. Reiss, X. Chen and the authors of Ref. [60]
for useful discussions. R. R. and F. H. acknowledge support
from the NSF under CAREER DMR-1455368 and the
Alfred P. Sloan foundation.

Note added.—Recently, we became aware of Ref. [60],
which considers chiral Floquet phases in the context of
MBL systems. Our results, while framed in a different
setting, seem consistent with this work. Some differences
are in the precise definition of effective edge unitaries and
in the use of MBL for setting up the discussion.
Reference [60] also suggests an experimental realisation
for these systems and includes an explicit topological
index, which we believe could also be used to classify
our effective edge unitaries.
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