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We consider light scattering off a two-dimensional (2D) dipolar array and show how it can be tailored by
properly choosing the lattice constant of the order of the incident wavelength. In particular, we demonstrate
that such arrays can operate as a nearly perfect mirror for a wide range of incident angles and frequencies,
and shape the emission pattern from an individual quantum emitter into a well-defined, collimated beam.
These results can be understood in terms of the cooperative resonances of the surface modes supported by
the 2D array. Experimental realizations are discussed, using ultracold arrays of trapped atoms and excitons
in 2D semiconductor materials, as well as potential applications ranging from atomically thin metasurfaces
to single photon nonlinear optics and nanomechanics.
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Control over propagation and scattering of light fields
plays a central role in optical science. In particular, it is well
known that emitters exhibit a strongly modified optical
response on resonance. For example, enhanced optical
scattering in 2D arrays of linearly polarizable elements
have been extensively studied in photonics [1–5]. Recently,
it has been shown that thin 2D metamaterials, known as
metasurfaces, whose constituent elements are optical anten-
nas with varying resonances, can drastically alter the
transmitted field by enabling spatial control of its ampli-
tude, phase and polarization [6,7]. As a rule, these elements
are microfabricated from macroscopic material, while the
separation between the array elements is typically much
smaller than the operating wavelength. At the same time,
resonant light can be completely reflected by individual
atoms when they are strongly coupled to nanophotonic
devices with subwavelength localization of light [8–12].
Intuitively, this originates from resonant enhancement of
the optical cross section of a polarizable dipole, which at
resonance universally scales as λ2, λ being its resonant
wavelength. Such single atom reflectors yield extraordinary
nonlinearities at the level of individual photons [13–15].
Here we explore light scattering from a 2D ordered and

dilute array of atoms, with a lattice constant of the order of
a wavelength, as can be realized, e.g., using ultracold atoms
loaded into optical lattices [16,17]. In such a case near-
resonant operation can still lead to strong scattering.
Indeed, vanishing transmission at normal incidence was
recently discovered in a numerical study of 2D atomic
lattices for a specific frequency and lattice arrangement
[18]. Because of resonant enhancement, one may naïvely
expect that a single layer of dipoles, even if they are as
small as individual atoms, may “tile” the plane and thus act
as a strong scatterer, provided the density of dipoles
exceeds 1=λ2 [Fig. 1(a)]. This reasoning, though providing
intuition for the possibility of strong scattering in dilute

media, ignores the important effect of multiple scattering of
electromagnetic fields between the dipoles, associated with
dipole-dipole interactions [19–24]. These interactions are
crucial to explain the collective phenomena and their
tunability explored in this work.
In what follows, we develop an analytical approach to the

scattering problem, highlighting the role of the cooperative
resonances of the dipolar array and their associated collec-
tive surface-wave excitations. Strong scattering generically
occurs when the frequency of the incident light matches that
of the cooperative resonance. The control of scattering off
the array can be achieved by adjusting the lattice constant,
which determines the cooperative resonances via the under-
lying dipolar interactions.We demonstrate that the array can

(a) (b)

(c)

FIG. 1. (a) 2D array of atoms spanning the xy plane at z ¼ 0,
with interatomic spacing a on the order of the resonant wave-
length of the atoms, λ. For resonant light, the individual atomic
cross section is of order λ2 (dashed circles). (b) Light scattering
off the array in the single diffraction order regime: The incident
field (yellow arrow) produces a forward scattered field at z > 0
and a reflected field at z < 0. (c) Intensity transmission coef-
ficient T and reflection coefficient R for a square lattice at normal
incident and resonant light (δ ¼ 0) as a function of the lattice
constant a. Strong scattering is observed with perfect reflection
occurring at a=λ ≈ 0.2, 0.8.
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form a nearly perfect mirror at almost all incident angles, as
well as act as an efficient coupler between an emitter and a
collimated optical mode. These results open a new direction
in the possibility to mold the flow of light, namely, by using
atomically thin metasurfaces.
Scattering at normal incidence.—We consider a 2D

array of identical pointlike particles with a generic linear
and isotropic polarizability [25]

αðδÞ ¼ −
3

4π2
ϵ0λ

3
a

γ=2
δþ iðγ þ γnrÞ=2

: ð1Þ

Here, δ¼ω−ωa, with jδj ≪ ωa, is the detuning between
the frequency of the incident lightω ¼ 2πc=λ and that of the
resonance of the particles ωa ¼ 2πc=λa, and γ (γnr) is the
radiative (nonradiative)width of this resonance. For a closed
cycling transition in atomswe have γnr ¼ 0 and the isotropic
and linear response corresponds to a J¼0 to J ¼ 1 transition
far from saturation. The array is taken to be an infinite square
lattice with lattice constant a < λ, spanning the xy plane at
z ¼ 0 [Fig. 1(a)]. We note that our analysis can be straight-
forwardly generalized to other lattice geometries.
We first focus on the simplest case of a plane wave at

normal incidence. The condition a < λ guarantees that only
a single diffraction order is present in the far field such that
the scattered field on both sides of the array consists of
plane waves propagating in the z direction [Fig. 1(b)].
Figure 1(c) shows the transmission and reflection coeffi-
cients as a function of the lattice constant, computed for
resonant light δ ¼ 0 and in the absence of nonradiative
losses, γnr ¼ 0, using our analytical approach presented
below. We observe that the array scatters strongly over a
wide range of lattice constants. In particular, complete
reflection (zero transmission) is observed at lattice con-
stants a=λ ≈ 0.2, 0.8. We note that the null transmission at
a=λ ≈ 0.8 was also recently found numerically in Ref. [18].
Let us now analyze the above situation. For a < λ the

total field can be written as

E ¼ ½eikz þ Seikjzj�E0; ð2Þ
where E0 is the amplitude of the field polarized in the xy
plane, k ¼ ω=c, and S is a scattering amplitude. For
S ¼ −1, the transmitted field (at z > 0) vanishes and the
corresponding perfect reflection gives rise to a standing
wave for z < 0. The scattering amplitude is determined by
the polarization p induced on the atoms by the incident
field, which is identical for all atoms in this case. In turn, p
is the result of multiple scattering of the incident field
by all atoms in the array, and it can be characterized by
an effective polarizability of the atoms defined by
p ¼ αeðδÞE0. A self-consistent solution of this multiple-
scattering problem yields [26]

SðδÞ ¼ iπ

�
λ

a

�
2 αeðδÞ
ε0λ

3
¼ −

iðγ þ ΓÞ=2
δ − Δþ iðγ þ γnr þ ΓÞ=2 : ð3Þ

By comparing the structure of this linear response to that of
an individual atom, Eq. (1), we infer that the dipolar
interaction between atoms in the array renormalize both
the width γ and the resonant frequency ωa. They are now
supplemented by their cooperative counterparts Γ and Δ,
respectively, given by

Δ−
i
2
Γ¼−

3

2
γλ
X
n≠0

Gð0;rnÞ; Γ¼ γ
3

4π

�
λ

a

�
2

− γ: ð4Þ

Here,Gð0; rnÞ is the transverse component (xx or yy) of the
dyadic Green’s function of electrodynamics in free space
[34], evaluated between the central atom (“n¼ 0”) at r0 ¼ 0
and the atom n at rn. The explicit expression for Γ holds for
a < λ and is in fact valid for any 2D lattice [26].
Equation (3) reveals that scattering is strongest when the

frequency of the incident light matches the cooperative
resonance, δ ¼ Δ. Perfect reflection (S ¼ −1) occurs if,
additionally, γnr¼0. Therefore, the key ingredient that
determines the scattering properties of the array is the
cooperative dipole-dipole shift Δ, given by the summation
(readily evaluated numerically) of the dispersive dipole-
dipole shift over all atoms, the real part of Eq. (4). Figure 2(a)
provides us with a central tool by which to understand
and design the scattering off the array, as it presents the
cooperative shift Δ as a function of the lattice constant a
[26]. For example, the vanishing cooperative shift Δ at
a=λ ≈ 0.2, 0.8 explains the perfect reflection obtained in
Fig. 1(c) for δ ¼ 0. Moreover, Fig. 2(a) shows that scattering
resonances exist for a wide range of incident field detunings
δ near the individual-atom resonance. This is illustrated by
Fig. 2(b), in which the reflection coefficient is plotted as a
function of both a and δ.
For lossy particles, where γnr ≠ 0, the scattering ampli-

tude (3) at resonance becomes S¼−ðΓþγÞ=ðΓþγþγnrÞ.
Therefore, high reflection requires that radiation damping
via scattering is dominant over all other damping sources,

(a) (b)

FIG. 2. (a) The cooperative shift Δ, Eq. (4), as a function of the
lattice constant a (normal incidence). This plot is central in the
design of the scattering since the shift determines the collective
resonances of the array according to Eq. (3). Perfect reflection
occurs when the cooperative shift equals the incident detuning,
δ ¼ Δ. For example, Δ ¼ 0 at a=λ ≈ 0.2, 0.8 explains the
resonances in Fig. 1(c). (b) Intensity reflection coefficient R as
a function of lattice constant a and detuning δ. We note that the
emerging contour of perfect reflection (bright yellow) coincides
with the cooperative resonance plotted in (a) (marked here by the
dashed black curve).
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γ þ Γ ≫ γnr. The scaling γ þ Γ ∝ ðλ=aÞ2, originating from
cooperative enhancement, then implies that this can be
achieved for a sufficiently small lattice constant even if the
individual dipoles are poor radiators (γ < γnr).
General angle of incidence.—The foregoing analysis can

be generalized to all incident angles. We begin by consid-
ering a < λ=2, which ensures a single diffraction order for
all incident plane waves, E0;k∥

eik∥·reikzz, at any angle. Here
k∥ ¼ ðkx; ky; 0Þ denotes the projection of the incident wave
vectork onto the xy plane andE0;k∥

can be decomposed into
the two possible transverse polarizations eþp;s⊥k. The total
field has the form of Eq. (2), where the scattering amplitude
now becomes a 3 × 3 matrix, and with eik∥·r∥E0;k∥

and kz
replacingE0 and k, respectively. The scattering amplitude is
again determined by the polarization of the atoms, which is
spatially modulated by the in-plane incident wave vector,
according to Bloch’s theorem. The polarization of atom n
can thus be written as pn ¼ pðk∥Þeik∥·rn , where

pðk∥Þ ¼ αeðk∥ÞE0;k∥
ð5Þ

denotes the polarization in momentum space. Hence, the
effective polarizability is generally defined as the linear
response of the polarization of the array in momentum
space, given by the tensor

αeðk∥Þ ¼ −
3

4π2
ε0λ

3
γ=2

δ − Δðk∥Þ þ i½γ þ γnr þ Γðk∥Þ�=2
:

ð6Þ

In analogy with Eqs. (1) and (3), Δðk∥Þ and Γðk∥Þ are the
cooperative resonance andwidth tensors, respectively, given

in terms of the dyadic Green’s function G by

Δðk∥Þ −
i
2
Γðk∥Þ ¼ −

3

2
γλ
X
n≠0

Gð0; rnÞeik∥·rn : ð7Þ

An analytic expression can be obtained for Γ [26], while Δ
has been evaluated numerically.
The scattering amplitude is related to the effective

polarizability by an expression similar to that in Eq. (3),
from which we can deduce the intensity reflection and
transmission coefficients. As illustrated in Fig. 3(a) for
s-polarized light, we find that the perfect reflection revealed
at cooperative resonance for normal incidence, persists
almost completely for all incident angles and both s and p
polarizations, well beyond the paraxial regime [26]. This
implies that the mirror should operate well for realistic
finite size incident beams and arrays, which was further
verified for Gaussian beams by a direct numerical approach
[26]. The high reflection at oblique angles may again be
understood in terms of cooperative resonances of the atom
array. For example, in Fig. 3(b) we plot the ss matrix

element of Δ, which is seen to vary by less than an atomic

linewidth over all incident angles, thus explaining the
excellent reflection of s-polarized light.
When the lattice constant exceeds λ=2, an additional

diffraction order can appear. This situation can be analyzed
by a straightforward extension of the above formalism,
entailing new possibilities such as retroreflection [26].
Surface dipole excitations.—More insight into the phys-

ics of the array is gained by noting that the cooperative shift

Δðk∥Þ describes the dispersion relation of collective surface
dipole excitations. The nature of these surface modes is
revealed by Eq. (5) as the normal modes of the atomic
dipoles on the surface, pðk∥Þ. The resonant frequencies of
the modes and their corresponding polarizations can be
deduced from their linear response αeðk∥Þ in Eq. (6) as the

three eigenvalues and eigenvectors of Δðk∥Þ. This inter-
pretation also follows from the quantum master equation
governing the dynamics of the atoms, wherein the eigen-

values of Δðk∥Þ arise naturally as the energies of the Bloch
modes of atomic excitations [26]. By diagonalizing Δ for
each k∥ within the Brillouin zone kx; ky ∈ ½−π=a; π=a�, we
obtain the band structure of the surface modes shown in
Fig. 4(a). The modes around the center of the Brillouin zone
(Γ), between the vertical dotted lines, satisfy jk∥j < 2π=λ
and couple to far-field radiation. Therefore, these modes are
responsible for the scattering and high reflection discussed
above. In contrast, modes with jk∥j > 2π=λ (beyond the
vertical dotted lines) cannot couple to the far field,

satisfying Γþ γ ¼ 0, and are confined to the surface.
Additional possibilities to control the propagation of

light are allowed via spatial variations in the 2D atomic
array, in analogy to its macroscopic metasurface counter-
part. One important example involves the design of a highly
directed emission pattern from a single impurity atom
coupled to the array. This can be achieved by first analyzing
the coupling of the impurity atom to the surface modes, and
then introducing a proper spatial modulation to the array,

(b)(a)

FIG. 3. Scattering at a general angle of incidence for a lattice
constant a ¼ 0.2λ. (a) Intensity reflection coefficient Rss for
s-polarized incident and scattered fields at zero detuning from
the bare atomic resonance (δ ¼ 0) as a function of the in plane
components kx;y of the incident wave vector. (b) ss component of

the cooperative shift matrix Δ. The variation of the energy shift
around the resonanceΔss ¼ δ ¼ 0 is small compared to an atomic
linewidth, which explains the high reflection Rss at all angles.
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which selectively couples the impurity to a well-collimated,
effectively 1D mode.
The decay of an excited impurity atom placed in prox-

imity of the array [Fig. 4(b)] is strongly modified at the
cooperative resonance, allowing, e.g., for the excitation of
confined surface modes. Assuming, for simplicity, an array
of atoms with a single dipolar transition (polarizability) in
the direction e0, the dispersion of the surface modes can be

described by a single band Δðk∥Þ ¼ e†0Δðk∥Þe0 [Fig. 4(a),
dashed curve]. Within the Born-Markov approximation, the
spontaneous emission rate from the impurity atom, with a
dipole transition of frequency ωI, orientation eI, and free-
space radiative width γI < γ, is given by ΓIðωIÞ ¼
3γIλIm½eI ·GAðrI; rIÞ� [34]. Here, GAðr; rIÞ is the electric
field produced by a dipole at position rI, frequency ωI and
polarization eI , which is found, in the presence of the array,
using the above formalism [35]. The emission can be
decomposed into two contributions: emission into scattering
modes (jk∥j < 2π=λ) and into modes confined to the
surface (jk∥j > 2π=λ). Its dependence on the impurity’s
frequency, plotted in Fig. 4(c), exhibits a discontinuity at

ðωI − ωaÞ=γ ≈ 1.1, for the given parameters, where
emission to the confined modes largely dominates over
those scattered to the far field. This discontinuity arises from
the resonant excitation of an extremum of the dispersion,
corresponding to the surface mode kM

∥ ¼ ðπ=a; π; aÞ on the
corner of the Brillouin zone (pointM) withΔðkM

∥ Þ=γ ≈ 1.1.
Then, by choosing the impurity transition such that
ðωI − ωaÞ=γ ¼ 1.1, the emitted photon is almost entirely
confined to propagate along the surface as a polariton with
momentum kM

∥ .
The mechanism by which this surface polariton can be

outcoupled to far-field radiation can be understood as
follows. The subradiant mode kM

∥ can be thought of as
being formed of two degenerate dipolar sublattices of
opposite phases, which destructively interfere at the far
field [Fig. 4(b)]. Consider now a weak periodic potential
which detunes the atoms in the array by �δω, where the
sign is opposite for any two nearest-neighbor atoms. Such a
perturbation splits the degeneracy between the two uniform
sublattices, thus allowing them to radiate into a collimated
far-field beam. Alternatively, this perturbation can be seen
as a spatial modulation of the array structure containing the
momentum components ð�π=a;�π=aÞ, which couple the
corner of the Brillouin zone (M) to the center, thus allowing
for excitations at kM

∥ to be emitted into a well-defined beam
normal to the array. Indeed, the numerical simulations for a
finite array in Figs. 4(d), 4(e) confirm that the resulting
emission is strongly collimated, with > 90% of the power
emitted into a cone of half angle 25°.
Discussion.—The current study demonstrates that the

scattering properties of light off a 2D atomic array are
determined by the dipolar interactions between the atoms
and, in particular, the cooperative resonances.
Possible experimental realizations of the 2D array include

ultracold atoms trapped in either red or blue detuned optical
lattices [16,36], arrays of plasmonic nanoparticles [2,4], or
2D semiconductors such as monolayers of transition metal
dichalcogenides [37], where a lattice structure for the
excitons or trions can be created [39–41] (see also
Ref. [42]). Considering disorder in any of these realizations,
we show in Ref. [26] that the cooperative resonances are
robust to fluctuations in the atomic positions when the
fluctuations are much smaller than the lattice period.
The above results suggest the potential use of such 2D

arrays as powerful platforms for classical and quantum
optics. In particular, the demonstrated coupling of an emitter
to a collimatedmode is analogous to efficient coupling to 1D
photonic systems. Therefore, it should allow to obtain
optical nonlinearities down to a single photon level for
properly collimated incident beams [8,13–15,43–46].
Furthermore, the generalization of our approach to other
nonhomogeneous arrays may allow to create “atomic-scale
metasurfaces”with desired properties. Our work also opens
up new prospects in optomechanics. Since the atoms are

(a)

(e)

(c)

(b)

(d)

FIG. 4. (a) Band structure of the collective surface modes of the
atom array for a ¼ 0.2λ. The three bands in solid lines correspond

to the three eigenvalues of the cooperative shiftΔðk∥Þ, whereas the
single dashed band is that of array atoms with a single circularly
polarized transition, e0 ¼ ð1; i; 0Þ= ffiffiffi

2
p

. The inset shows the
location of the special points Γ, X, M in the first Brillouin zone.
The dotted vertical lines (main figure) and the circle (inset) indicate
the light cone jk∥j ¼ 2π=λ. (b) An impurity atom (red) is placed at
the center of the array. The black and white colors of the array
atoms represent the two sublattices which form the surface mode
M. (c) Decay rate to surface modes inside (dashed) and outside
(solid) the light cone, of the impurity atom with polarization eI ¼
ð1;−i; 0Þ= ffiffiffi

2
p

as a function its transition frequencyωI. (d) Intensity
of the electric field produced by an impurity (red dot), driven at
detuning ðω − ωaÞ=γ ¼ 1.1 and resonant with the surface modes
near the corner of the Brillouin zone (M). An alternating periodic
potential, δω=γ ¼ �0.1, is applied on an array of 30 × 30 atoms
(white circles), with all other parameters the same as in (b). The
bright yellow region near z ¼ 0 corresponds to the excited surface
modes, which are then coupled into the collimated beam by the
periodic potential. (e) Emitted power integrated over a cone of half
angle θ for the situation described in (d).
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very light but at the same time collectively exhibit nearly
perfect reflection, they form a highly mechanically suscep-
tible mirror, potentially very useful for the exploration of
optomechanics at the quantum level [47].
Finally, we stress the universality of our approach, based

on summation of Green’s functions at lattice points,
relevant for cooperative resonances at any physical system
of waves and dipolelike scatterers.
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