
Quantifying Photonic High-Dimensional Entanglement

Anthony Martin,1 Thiago Guerreiro,1,* Alexey Tiranov,1 Sébastien Designolle,1 Florian Fröwis,1

Nicolas Brunner,1 Marcus Huber,1,2 and Nicolas Gisin1
1Group of Applied Physics, University of Geneva, CH-1211 Geneva 4, Switzerland

2Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, A-1090 Vienna, Austria
(Received 21 December 2016; published 14 March 2017)

High-dimensional entanglement offers promising perspectives in quantum information science. In
practice, however, the main challenge is to devise efficient methods to characterize high-dimensional
entanglement, based on the available experimental data which is usually rather limited. Here we report the
characterization and certification of high-dimensional entanglement in photon pairs, encoded in temporal
modes. Building upon recently developed theoretical methods, we certify an entanglement of formation of
2.09(7) ebits in a time-bin implementation, and 4.1(1) ebits in an energy-time implementation. These
results are based on very limited sets of local measurements, which illustrates the practical relevance of
these methods.

DOI: 10.1103/PhysRevLett.118.110501

Introduction.—Entanglement is among the most fasci-
nating features of quantum theory and at the heart of
quantum information processing. In recent years, a growing
interest has been devoted to the possibility of generating
entangled states of high dimensions. Such states can in
principle contain a large amount of entanglement, which is
conceptually interesting but also offers novel perspectives
for applications in quantum information, particularly in
quantum communications [1–5].
Several experimental platforms have been considered for

the creation of highly entangled states, in particular in
photonics. These include encodings based on energy
time [6–8], time bins [9–12], orbital angular momentum
[13–15], and frequency modes [16–18]. Thus, highly
entangled states are now routinely created in all of these
platforms. Also, the entanglement of these states can be
detected experimentally, via the use of entanglement
witnesses or Bell inequalities [19,20].
However, the real challenge in this area is the exper-

imental certification of large entanglement, such as high-
dimensional entanglement. That is, not only to certify the
mere presence of entanglement, but also to provide an actual
certification of the amount of entanglement present in the
state. This issue is challenging for two different reasons.
First, the characterization of a quantum state of high

dimension via standard methods (e.g., quantum tomogra-
phy) typically requires the estimation of a considerable
number of independent parameters, which in turn requires a
large number of different measurements to be performed.
In practice, this is extremely cumbersome and essenti-
ally infeasible. Second, the measurements that can
actually be performed in a real experiment are typically
limited. Thus, the use of efficient methods to certify high-
dimensional entanglement is further constrained by a
restriction on the class of measurements available in the lab.

This has been an active area of research in recent
years. Several works have reported efficient methods for
the full characterization of the quantum state [21–24], based
on the extra assumption that the state is of high purity. Others
discussed the certification of high-dimensional entanglement
using mutually unbiased basis [25,26], two-dimensional
subspaces [27], or assuming that certain quantities (e.g.,
total angular momentum) are conserved [15]. Finally,
experimental prospects for applications in quantum commu-
nications were also explored [28,29].
Here, we report the characterization and certification of

high-dimensional entanglement in photonic systems, based
on very sparse experimental data. To do so, we build upon
the theoretical methods recently developed in Ref. [30]. We
first discuss a time-bin entangled two-photon experiment,
in which we certify the presence of at least 2.09 (7) ebits of
entanglement of formation. In other words, we certify that
the created states contain (i) an amount of entanglement
equivalent to more than two maximally entangled two-
qubit pairs, and (ii) entanglement in (at least) 5 × 5
dimensions. Second, we report an experiment using
energy-time entangled photon pairs, and certify up to
4.1 (1) ebits of entanglement of formation, based on few
additional assumptions. This certifies entanglement in a
state of dimension (at least) 18 × 18. To the best of our
knowledge, this represents the highest values of entangle-
ment of formation certified so far in any experiment. These
results demonstrate the potential of temporal entanglement
as a platform for creating and certifying quantum states
featuring a large amount of entanglement.
Setup.—The setup of our experiment is sketched in

Fig. 1. Time-bin entanglement is generated using sponta-
neous parametric down-conversion. A picosecond mode
locked laser at 532 nm creates a train of pulses, which then
stimulates a type 0 periodically poled lithium niobate
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crystal to generate photon pairs at a wavelength of 810 and
1550 nm. The delay between two successive pulses is
Δ ¼ 2.3 ns. At the output of the crystal, when we have
exactly one pair, the state generated is of the form

jΨi ¼ 1
ffiffiffi
n

p
Xn

j¼1

cjeiϕj jj; ji; ð1Þ

where jj; ji denotes the states where both photons are in the
pulse j, which has amplitude cj, and phase ϕj. The mode-
locked laser preserves the amplitude and phase relation
over a large number of pulses n. This means that cj and ϕj
can be considered constant for nΔ smaller than the
coherence time of the laser. In our configuration based
on a laser with a coherence time greater than 1 μs and a
repetition rate of 430 MHz, the coherence of this state can
be preserved for n ≤ 400. Moreover, the pump power is set
in such a way that the probability to generate two photon
pairs in a n-pulse train is negligible.
The created time-bin entangled two-photon state is then

analyzed. First, the two photons (of each pair) are separated
by a dichroic mirror and each photon is sent to a bulk
unbalanced interferometer. The delay between the short and
long arms of the interferometers can be set to Δ and 2Δ in
order to analyze the coherence between two neighbor
(j and jþ 1) and next-neighbor (j and jþ 2) temporal
modes. These delays are much larger than the pulse
duration of the laser τp ≈ 10 ps and the coherence time
of the down-converted photons τc ≈ 1 ps (the coherence
time of the photons is estimated from the bandwidth of
the photon at 1550 nm which is around 3 nm). In this case,
only second order interference can be measured by ana-
lyzing the coincidence rate at the output of the interfer-
ometers, which correspond to the local projections onto the
state hjþ i; jþ ije−iðϕaþϕbÞ þ hj; jj (with i ¼ 1, 2), where
ϕa and ϕb correspond to the relative phase between the two
arms of the interferometers. These phases can be adjusted
by piezoactuators. To extract the visibility, the phase of one

of the two interferometers is scanned to find the maximum
and minimum coincidence rates, which correspond to
constructive and destructive interference, respectively. At
the output of each interferometer, the photons are detected
via a single photon detector (SPD), based on a silicon
(respectively, InGaAs) avalanche photodiode for the pho-
ton at 810 nm (respectively, 1550 nm). To associate the
detections with the correct temporal modes, the detection
events are sent to a time-to-digital converter where the
clock is set on the laser frequency divided by 212. More
precisely, the temporal mode j corresponding to each
detection is defined from the time delay between the clock
trigger and the detection event.
Entanglement certification.—Our goal here is to char-

acterize the entanglement of the time-bin entangled state we
create. This is, however, a nontrivial problem, due to the
very limited data available from the experiment. In par-
ticular, we cannot reconstruct the full density matrix ρ of
the state, due to the fact that we are not able to exper-
imentally measure each element hj; kjρjj0; k0i. This would
require having basically n unbalanced interferometers,
which is clearly unpractical.
Specifically, our setup allows us to measure only the

following quantities. First, we can measure coincidence
events in the time-of-arrival basis, which gives access to the
diagonal density matrix elements hj; kjρjj; ki. Second, we
can measure the interference visibility between two neigh-
boring temporal modes (j and jþ 1), and similarly for two
next-neighboring temporal modes (j and jþ 2). Hence, we
can estimate the off-diagonal elements hj; jjρjjþ i; jþ ii
for i ¼ 1, 2 (Fig. 1). Apart from these quantities, we cannot
get access to any further elements of ρ.
Although these data are rather limited, it turns out that

we can, nevertheless, efficiently characterize the entangle-
ment produced by the source. In particular, we obtain
strong lower bounds on the amount of entanglement
contained in the state. To do so we build upon recent
theoretical methods presented in Ref. [30]. More specifi-
cally, this approach will allow us to lower bound the
entanglement of formation of ρ, EoF. This measure repre-
sents the minimal number of “ebits” (i.e., the number of
maximally entangled two-qubit states) required in order to
produce ρ via an arbitrary local operations and classical
communication procedure [31]. This measure thus has a
clear operational meaning. Specifically, it was shown in
Ref. [32] that

EoF ≥ −log2

�

1 −
B2

2

�

; ð2Þ

where the quantity B is defined as

B¼ 2
ffiffiffiffiffiffijCjp

� X

ðj;kÞ∈C
j<k

jhj;jjρjk;kij−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj;kjρjj;kihk;jjρjk;ji

p �

:

ð3Þ

FIG. 1. Schematic view of the experiment for creating and
quantifying high-dimensional entanglement using limited meas-
urement data. The time-bin entangled two-photon state is
produced by the spontaneous parametric down-conversion proc-
ess using a χð2Þ nonlinear crystal. The crystal is pumped by a
mode-locked laser with a high repetition rate producing a photon
pair in well-defined temporal modes jj; ji. A Franson type setup
[6] consisting of two interferometers is used to analyze the
resulting state and reveal its entanglement.
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Here, jCj denotes the cardinality of the set C, i.e., the
number of pairs of indices ðj; kÞ to be considered in the
sum. By taking more and more elements in C, one obtains
typically better bounds on EoF. How many pairs of indices
can be considered depends on how many off-diagonal
elements of ρ are known. Note that B provides a lower
bound on the concurrence of ρ [32]. For any quantum state
of dimension d × d, one has that EoF ≤ log2ðdÞ. The
bound log2ðdÞ is obtained for the maximally entangled
state jΦdi ¼ ð1= ffiffiffi

d
p ÞPd

j¼1 jj; ji, for which we have
B ¼ 2ðd − 1Þ=d.
While the data available in our experiment do not allow

us to reconstruct the complete density matrix, we can,
nevertheless, get strong bounds on the entanglement of
formation of ρ. First, note that the terms hj; kjρjj; ki (with
j < k) in Eq. (3) are directly related to the coincidence
to accidental ratio (CAR) of the source, which can be
measured. Concerning the off-diagonal terms hj; jjρjk; ki,
recall that we can only determine directly those for which
jk − jj ≤ 2. In Ref. [30], it was shown that the remaining
unknown off-diagonal elements can be efficiently lower
bounded by focusing on certain submatrices of ρ, and
imposing their positivity (which follows from the positivity
of ρ). Here, we combine these ideas with semidefinite
programming (SDP) techniques. Specifically, we focus on
the submatrix of ρ: ~ρjk ¼ ℜðhj; jjρjk; kiÞ. (Note that ~ρ is
usually subnormalized in practice, due to noise terms. It
will then be convenient to renormalize ~ρ.) Via SDP (we
used the YALMIP interface and the SEDUMI solver [33,34],
which allow one to define an objective function as the sum
of absolute values of matrix elements), one can then
minimize the expression

P
j<kjhj; jj~ρjk; kij [for ðj; kÞ in

the set C], under the constraints that ~ρ is positive and that
some elements of ~ρ (or some linear combinations of them)
are known from the data. From the result of this SDP, we
then get a lower bound on the entanglement of formation,
via Eqs. (3) and (2). Importantly, the bound we obtain here
is essentially tight, given that the solution returned by the
SDP is a valid density matrix. Among all possible physical
states compatible with our data, the SDP solution corre-
sponds to the one featuring the smallest amount of
entanglement.

Experimental results.—Next, we apply the above
methods to our experimental data. We consider eight
temporal modes. Measurements in the time-of-arrival
basis lead to coincidences events, see Fig. 2(a). This also
allows us to estimate the CAR to be greater than 103. We
thus take hj; kjρjj; ki ¼ 10−3 for any k ≠ j. Also, using the
unbalanced interferometers we measure the interference
visibilities by applying the local projections hjþ i;
jþ ijeiðϕaþϕbÞ þ hj; jj (for i ¼ 1, 2 and j ¼ 1;…; 8 − i)
and vary the relative phase. As seen from Fig. 2(a), the
average visibility is around 98%.
Next, we run the SDP procedure explained above. In

order to find the largest value of the entanglement of
formation, it is useful to consider all contiguous subsets of
n ¼ 2;…; 8 of the total eight temporal modes. Increasing n
may increase the first term of the quantity B [see Eq. (3)],
but will also decrease the norm of each term due to the
normalization of the state. In practice, we scan over all
possible values of n and keep the best. Moreover, one
should tune the subset C. Here, enumerating all 2nðn−1Þ=2 is
not possible; in practice, we simply take C to contain all
possible pairs of indices ðj; kÞ, thus taking all off-diagonal
elements into account. The largest value is found for n ¼ 7:
EoF ¼ 2.09ð7Þ ebits; see Fig. 2(b). This result also certifies
that our time-bin entangled states is of dimension at least
5 × 5. Table I shows the submatrix ~ρ generated by the SDP,
highlighting known and unknown matrix elements.
Energy-time entanglement.—Our theoretical methods

can in principle be used for certifying much higher
entanglement. Experimentally, this amounts to considering
more temporal modes, and measuring more off-diagonal
elements. However, in our configuration, this would require
us to increase the path difference of the interferometers up
to 70 cm, which is unpractical.
Instead, we pursue a different approach. In order to

effectively reduce the interferometer size one can modify
the source of entanglement, using, e.g., a pulsed laser
with a faster repetition rate or a continuous laser. Here, we
explore the second option. In this case, the entanglement
originates from energy-time correlations induced by the
narrow spectrum (long coherence time) of the pump laser.
The resulting state can, nevertheless, be equivalently

(b)(a)

FIG. 2. Results for the time-bin experiment. (a) Here, ðj; jÞ corresponds to the intensity probabilities [jcjj2 in Eq. (1)], while ðj; jþ 1Þ
and ðj; jþ 2Þ represent the visibilities of the two-photon interference between two neighboring and next-neighboring temporal modes.
We consider eight temporal modes. (b) Lower bounds on the entanglement of formation (in terms of ebits) as a function of the number of
temporal modes n considered. The data allow us to certify an entanglement of formation of 2.09(7) ebits, taking n ¼ 7. The black dots
correspond to the mean number of ebits and the one σ statistical error is represented by the filled red curve.
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written in the form of Eq. (1) by properly defining the
temporal modes.
In practice, we used another source of photon pairs based

on a type-0 pigtail periodically poled lithium niobate
waveguide stimulated by a diode laser at 780 nm to
generate degenerate photons at 1560 nm. To filter down
the photons to 100 GHz, the output of the source is
connected to a 200 GHz dense wavelength division multi-
plexer, which increases the coherence time of the photons
to 4.4 ps. To analyze the coherence between different
temporal modes the photon pairs are sent to a single folded
bulk Franson interferometer [35] and a single photon
detector is placed at each output port to measure the
second order correlation. A motorized mirror placed on
one arm can continuously change the interferometer delay
length from 0 to 29 cm.
The main difference between this approach and our first

experiment comes from the fact that we can now choose the
delay between two adjacent temporal modes (given pre-
viously by Δ) as long as the modes do not overlap, i.e., that
our entangled state satisfies hj; kjρjj; ki ≈ 0∀j ≠ k. To do
so, we fix the time between two adjacent modes equal to
33 ps (1 cm), which allows us to analyze 29 temporal
modes. In this configuration, the temporal jitter of the
detection scheme (around 200 ps) is larger than the delay
between two temporal modes, which means that we cannot
access each mode individually anymore.
As in our first experiment, the values of the off-

diagonal elements are directly related to the visibility of the

two-photon interference. As shown in Fig. 3(a), when
the delay between the two arms is set to zero, i ¼ 0, we
observe single photon interferences with a visibility of
98.5(8)%. When we increase the delay length from 1 to
11 cm (33 to 337 ps), we observe that the visibility drops to
53(3)% and increases to 98(1)%. For these delays, we
do not observe single photon interferences anymore, and
two-photon interference is limited by the detection system.
Indeed, due to the jitter of the detection scheme, the cases
where the two photons pass through different arms cannot
be removed by a temporal postselection. For i > 11, we
observe that the visibilities are constant, and around 99%.
In this configuration, we cannot infer the values of
elements of the 11 first off diagonals, but only from the
off diagonals 12 to 29. Also, we measure a CAR of 5650
using low noise detectors cooled down to −90 °C with a
Stirling cooler [36].
In order to quantify entanglement from this data, we

use again our theoretical method and analyze the submatrix
~ρ. Contrary to our first experiment, the elements of ~ρ are
not known individually, but only certain averages. In
particular, the measured visibilities provide the following
constraints: 1=n − i

P
n−i
j¼1ℜðhj; jj~ρjjþ i; jþ iiÞ ¼ Vi for

i ∈ f12; 29g, which are included in the SDP. We also
have a constraint on the diagonal elements of ~ρ, namely
1=n

P
n
j¼1 hj; jj~ρjj; ji ¼ 1 which follows from normaliza-

tion of the state ρ. All remaining matrix elements
are unknown; hence, the submatrix ~ρ takes the form as
shown in Eq. (4):

TABLE I. Submatrix ~ρ generated by the SDP procedure. The boldface numbers are the elements experimentally measured while the
lightface numbers are a priori unknown. The values are normalized with respect to the dimension of ~ρ. Error bars are estimated over 20
experimental runs for the boldface numbers, and via Monte Carlo simulation for the lightface numbers.

j1; 1i j2; 2i j3; 3i j4; 4i j5; 5i j6; 6i j7; 7i j8; 8i
h1; 1j 1.01ð4Þ 0.98ð2Þ 0.99ð2Þ 0.96(3) 0.91(3) 0.89(4) 0.84(4) 0.75(5)
h2; 2j 0.98ð3Þ 1.02ð3Þ 1.00ð2Þ 1.01ð2Þ 0.96(3) 0.97(3) 0.91(3) 0.84(4)
h3; 3j 0.99ð2Þ 1.00ð2Þ 1.00ð3Þ 1.00ð2Þ 0.96ð2Þ 0.96(3) 0.91(3) 0.85(4)
h4; 4j 0.96(3) 1.01ð2Þ 1.00ð2Þ 1.02ð3Þ 0.98ð2Þ 1.00ð2Þ 0.95(3) 0.90(3)
h5; 5j 0.91(3) 0.96(3) 0.96ð2Þ 0.98ð2Þ 0.96ð3Þ 1.00ð2Þ 0.95ð2Þ 0.92(3)
h6; 6j 0.89(4) 0.96(3) 0.96(3) 1.00ð2Þ 1.00ð2Þ 1.05ð3Þ 0.99ð2Þ 0.99ð2Þ
h7; 7j 0.84(4) 0.91(3) 0.91(3) 0.95(3) 0.95ð2Þ 0.99ð2Þ 0.96ð3Þ 0.95ð2Þ
h8; 8j 0.75(5) 0.84(4) 0.85(4) 0.90(3) 0.99(3) 0.99ð2Þ 0.95ð2Þ 0.98ð3Þ

(b)(a)

FIG. 3. Results of the energy-time experiment. (a) Visibility of the two-photon interference representing coherence between temporal
modes jj; ji and jjþ n; jþ ni where n is a bin number. The bin n ¼ 0 corresponds to the first order interference with visibility of
98(1)%. Up to bin number 11 (blue), the visibility is rather low due to the jitter of the detection system. For the remaining bins (green),
the average visibility is 98.5(8)%. In order to lower bound the entanglement of formation, we use bins 12 to 29. (b) Lower bounds on the
entanglement of formation (in terms of ebits) as a function of the number of temporal modes n for the CW experiment. Energy-time
entanglement containing up to 4.1(1) ebits is certified for n ¼ 42. The filled red curve represents the one σ statistical error.
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~ ð4Þ

Finally, to estimate the entanglement, we run the SDP
procedure considering various values of the number of
temporal modes up to n ¼ 50. As shown in Fig. 3(b),
the data allow us to certify an entanglement of formation
of EoF ¼ 4.1ð1Þ ebits, for n ¼ 42. This also certifies
that our entangled state is of dimension at least 18 × 18.
Conclusion.—We have demonstrated the quantification

and certification of high-dimensional photonic entangle-
ment, based on sparse experimental data. First, using a time-
bin encoding we certified an entanglement of formation of
2.09(7) ebits. Next, moving to an implementation based on
energy-time entanglement we could certify up to 4.1(1)
ebits. This represents a considerable improvement over the
largest values certified so far in any experiment; to the best
of our knowledge, the highest value up until now was
EoF ¼ 1.2 ebits in Ref. [30]. This demonstrates that pho-
tonic systems encoded in temporal modes are ideally suited
for the creation, certification, and quantification of high-
dimensional entanglement. This opens promising perspec-
tives for future applications in quantum information science.
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