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We model theoretically a two-dimensional electron gas (2DEG) covered by a superconductor and
demonstrate that topological superconducting channels are formed when stripes of the superconducting
layer are removed. As a consequence, Majorana bound states (MBSs) are created at the ends of the stripes.
We calculate the topological invariant and energy gap of a single stripe, using realistic values for an InAs
2DEG proximitized by an epitaxial Al layer. We show that the topological gap is enhanced when the
structure is made asymmetric. This can be achieved either by imposing a phase difference (by driving a
supercurrent or using a magnetic-flux loop) over the strip or by replacing one superconductor by a metallic
gate. Both strategies also enable control over the MBS splitting, thereby facilitating braiding and readout
schemes based on controlled fusion of MBSs. Finally, we outline how a network of Majorana stripes can
be designed.
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Majorana bound states (MBSs) are states localized at the
edges of topological superconductors [1–4]. They have
nonlocal properties that may be utilized for storage and
manipulation of quantum information in a topologically
protected way [5–7]. However, the realization of MBSs
requires superconducting p-wave pairing, which appears
only in exotic materials. Therefore, there is currently a
search for ways to engineer p-wave pairing by combining
s-wave superconductors with strong spin-orbit materials.
Recent experiments looked for evidence of MBSs in, for
example, semiconducting nanowires [8–14], topological
insulators [15], and magnetic atom chains [16,17]. These
systems may also allow demonstration experiments of the
nonlocal properties of MBSs, for example, using recent
suggestions for controlling MBSs in prototypical architec-
tures [18–23]. However, to go beyond basic demonstration
experiments, a scalable and flexible platform for large-scale
MBS networks is needed.
Here, we suggest one such flexible platform based on a

two-dimensional electron gas (2DEG) with strong spin-
orbit coupling in proximity to a superconductor [24]. Such
structures, reviewed in Ref. [25], have been realized by
contacting InAs surface inversion layers [26,27] or InAs/
InGaAs heterostructures [28,29] with superconducting Nb
or Al. Recently, it has become possible to grow an Al top
layer epitaxially [24], forming a clean interface with the
2DEG. The proximitized 2DEG (denoted by pS) develops a
hard superconducting gap as revealed by experiments on
pS-N quantum point contacts [30] or gateable pS-N-pS
junctions [24] with clear signatures of multiple Andreev
reflection [31] and nontrivial Fraunhofer patterns [32]. The
transport properties of these structures have been studied
extensively [25], but their potential as a MBS platform
has not.

We show how to design and control MBSs in a pS
system with a stripe of the superconducting layer removed
to form an effective one-dimensional topological super-
conductor. This forms a pS-N-pS junction as sketched in
Fig. 1(a), which can be fabricated by standard lithographic
techniques. We show, similar to other semiconductor-based
setups [33–37], that this system undergoes several topo-
logical phase transitions when increasing a magnetic field
parallel to the stripe for parameters readily available in the
lab. We base our findings on a numerical tight-binding
calculation of the energy spectrum, the topological invari-
ant, as well as transport calculations [38]. We discuss how

FIG. 1. Illustration of a stripe hosting MBSs in a 2DEG-based
platform. Panel (a) shows the device with the superconducting
layer removed along a stripe, and point contacts formed at the
ends to facilitate tunneling spectroscopy of the MBSs shown
in (b), where the probability density [38] Pðnx; nyÞ of the MBS
wave function is plotted. The calculation is done on a lattice
with Nx ¼ 260 and Ny ¼ 160 sites, and the parameters are
EZ ¼ 200 μeV, ΓL ¼ ΓR ¼ 180 μeV, α ¼ 1.42 × 10−4c, μ ¼ 0,
LL ¼ LR ¼ 1 μm, LM ¼ 250 nm, LY ¼ 4 μm, m� ¼ 0.023me,
and φL ¼ φR ¼ 0.
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the topological energy gap depends on various parameters,
which is vital for the topological protection and the
manipulation time scales of the MBSs. We show that
two slight modifications of the structure shown in
Fig. 1, which break the inversion symmetry, give a large
enhancement of the topological gap: (i) a phase bias
(generated by a supercurrent) across the stripe or (ii) a
replacement of one of the superconducting top layers by a
gate electrode. Both methods allow us to fuse the MBS
electrically, which can be used to manipulate MBSs in
2DEG structures. In the last part of the Letter, we discuss
designs of more advanced MBS networks for fusion-rule
testing and braiding.
Model.—We model the (unproximitized) 2DEG by a

single electron band with effective mass m� and electro-
chemical potential μ. The device has a finite extension
with −ðLL þ LM=2Þ ≤ x ≤ ðLR þ LM=2Þ and jyj ≤ LY=2,
where it is described by the Bogoliubov–de Gennes
Hamiltonian (e ¼ ℏ ¼ kB ¼ c ¼ 1):

Hðx; yÞ ¼
�
−

1

2m� ð∂2
x þ ∂2

yÞ − μ

�
τz

− iαðσx∂y − σy∂xÞτz þ EZσy=2: ð1Þ

In the second line, we add the Rashba spin-orbit coupling
(with velocity α) and the Zeeman energy (EZ) due to a
magnetic field along the stripe. The Hamiltonian acts on the
four-component spinor ψ ¼ ½ψe;↑;ψe;↓;ψh;↓;−ψh;↑�T con-
taining the electron (e) and hole (h) components for spin
σ ¼ ↑;↓. The Pauli matrices τi and σi (i ¼ x, y, z) act on
the particle-hole and spin space, respectively.
We include the proximity effect of the superconducting

top layer within the Green’s function formalism. Integrating
out the superconductor in the wideband limit, the Green’s
function of the 2DEG reads [49–51]

GRðx;ωÞ ¼ ½ω −Hðx; yÞ − Σðx;ωÞ þ i0þ�−1; ð2Þ

with self-energy for ω < Δ

Σðx;ωÞ ¼ ΓðxÞΔ½cosφðxÞτx − sinφðxÞτy� − ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − ðωþ i0Þ2

p : ð3Þ

The self-energy is zero in the stripe region, Γðjxj <
LM=2Þ ¼ 0, and nonzero under the two superconducting
layers coupled to the 2DEGwith symmetric tunneling rates,
Γðjxj > LM=2Þ ¼ Γ. In this way, we make an assumption
about only the superconducting order parameter in the
metallic top layer, while the superconducting pairing
in the 2DEG is determined by Eq. (2). The two top layers
are assumed to have the same gap Δ but possibly different
phases φðx < −LM=2Þ ¼ φL and φðx > LM=2Þ ¼ φR.
Such a phase bias can be realized experimentally by running
a supercurrent across the stripe. Our self-energy does not
include a proximity-induced shift of the chemical potential

under the superconductor. This is motivated by recent
experiments [31] showing that pS-N-pS junctions have a
high transparency, which indicates a rather small mismatch
in Fermi velocities.
Symmetry class and topological invariants.—We first

investigate the general topological properties of the stripe.
Since its aspect ratio is large (LY ≫ LM), the system is
quasi-1D, similar to coupled [52,53] or multiband [50,54]
nanowires. The topological properties are, in general,
determined by the zero-frequency Green’s function
GRðx; 0Þ [55,56]. The self-energy Σðx; 0Þ takes in this
limit the form of a nondissipative pairing term, and the
topological properties are thus determined by [57]

Heff ¼ Hðx; yÞ þ ΓðxÞ½cosφðxÞτx − sinφðxÞτy�: ð4Þ

This effective Hamiltonian respects particle-hole sym-
metry, since it anticommutes with the antiunitary operator
P ¼ σyτyK (K denotes the complex conjugation). If no
generalized time-reversal symmetry is present, the system
is thus in symmetry class D (P2 ¼ 1) with a Z2 topological
invariant WZ2

[58,59].
However, our system can also be in the higher-symmetry

class BDI with an integer topological invariant WZ.
This is the case if the system has spatial symmetry in
the x direction (LL ¼ LR), assuming here no disorder in
the x direction. The effective Hamiltonian then possesses
an additional generalized “time-reversal” symmetry:
It commutes with the antiunitary operator T ¼ σzIxK (Ix
is the reflection in the x direction) [60]. This symmetry
holds even in the presence of a phase bias [61]. Unlike the
physical time reversal, the generalized operator T squares
to identity, T2 ¼ 1. If both P and T symmetry are present,
chiral symmetry is also present; i.e., Heff anticommutes
with C ¼ −iPT ¼ σxτyIx.
To predict a topological phase transition, we compute

topological invariants WZ (BDI) and WZ2
(D). To obtain

WZ, we follow Ref. [62]: Because the chirality operator
satisfies C†C ¼ C2 ¼ 1, its only eigenvalues are �1 and
in these two subblocks the Hamiltonian is off-diagonal
(since ½C;Heff �þ ¼ 0):

C ¼
�
1 0

0 −1

�
; Heff ¼

�
0 A

A† 0

�
: ð5Þ

The Z invariant follows from the winding number of the
phaseθðkyÞof thedeterminantofA, detAðkyÞ=j detAðkyÞj ¼
eiθðkyÞ as WZ ¼ R

∞
0 dkydθðkyÞ=dky=π. The integer WZ

characterizes the number of MBSs which appear at the
boundaries of a long stripe with two topologically trivial
regions.
When T symmetry is broken, an even number of MBSs

on the same boundary couple to each other, turning them
into finite-energy modes. This leaves either zero or one
MBS, characterized by the Z2 invariant WZ2

. We compute
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WZ2
in the standard way [63] by representing Heff as a

matrix MðkyÞ in the Majorana representation. The topo-
logical invariant is given by the relative sign of the Pfaffian
ofMðkyÞ at the T-invariant points ky ¼ 0 and ky ¼ ∞ [38].
Topological phase transition.—Figure 2 demonstrates

that the stripe region undergoes a topological phase
transition for material parameters in the range of recent
experiments [24,30,31]. We obtain our results numerically
using a tight-binding approximation of the effective
Hamiltonian (4) [38,64].
We first discuss the T-symmetric case (left panels in

Fig. 2). Starting from the topologically trivial regime
(WZ ¼ 0), one can identify a first phase transition at
Zeeman energy EZ;cr ∼ 120 μeV [WZ ¼ 0 → 1, Fig. 2(a)].
For a g factor of about 10 [30], this requires a magnetic field
of ∼200 mT, much lower than the critical fields in Al thin
films [65]. At first sight, it may be surprising that the critical
Zeeman energy EZ;cr is smaller than the induced super-
conducting gap Γ under the superconducting top layers.
The reason is that the Andreev bound states in the stripe
experience the pairing potential only where they penetrate
into the proximitized region and, as a consequence, the
effective gap is smaller than Γ.
In agreement with the change in WZ, a pair of states

comes close to zero energy around EZ ¼ EZ;cr [Fig. 2(b)].
The wave functions of these states are localized at the ends
of the stripe [Fig. 1(b)], and, because of the finite length of
the stripe, their energies oscillate around zero [Fig. 2(c)].
From Fig. 2(b), we extract an energy gap to excited states—
the topological energy gap—of about 20 μeV, which
corresponds to about 200 mK.

A second phase transition takes place for EZ ∼ 320 μeV
[WZ ¼ 1 → 2, Fig. 2(a)], where, for a finite stripe length, a
second pair of states approaches zero energy [Fig. 2(b)].
However, for the parameters chosen in Fig. 2, the states
remain split in energy, because theWZ ¼ 2 regime is close
to the breakdown of the induced superconducting gap (at
EZ ¼ 2Γ ∼ 360 μeV). By increasing the stripe width, one
can reach the regime of two MBSs for lower EZ [38]. To
confirm the presence of the MBSs, one can probe the
conductance of the stripe by two quantum point contacts
[see Fig. 1(a)]. From numerical calculations, we find a zero-
bias peak up to 2e2=h [38,66–68].
For future applications for topological quantum-

information processing, it is desirable to enhance the
topological energy gap as much as possible. This can be
achieved, for example, with an asymmetric device structure
as depicted above Fig. 2(d): One replaces one of the
superconducting layers by a top gate that creates a potential
barrier for the electrons in the 2DEG underneath. We
model this here by terminating the system at the right end
of the stripe setting LR ¼ 0. The Hamiltonian is now in
class D, since T symmetry is broken. The Z2 invariant
WZ2

indicates a phase transition around EZ ∼ 120 μeV
[WZ2

¼ þ1 → −1, Fig. 2(d)], and a single pair of states
approaches zero energy [Fig. 2(e)]. Compared with the
symmetric device, their energy splitting is much smaller
[∼0.1 μeV, Fig. 2(f)] and the topological gap is increased
[∼40 μeV, Fig. 2(e)]. An asymmetric device design thus
seems promising for stabilizing MBSs.
Phase diagrams and topological gap.—To study the

optimal conditions for observing MBSs in experiments
more systematically, we next investigate the topological
energy gap (see the caption of Fig. 3). Both the gap and the
boundaries of the topological phases given by the zero-gap
condition exhibit a nontrivial dependence on the different
parameters (Fig. 3). Because of the finite-frequency and
finite-size effects, the actual topological gap may be
smaller, but by comparing with transport calculations
(including both effects) we find only a small reduction [38].
We first focus on the case with inversion symmetry

[Figs. 3(a)–3(c)]. The phase-transition point depends on the
spin-orbit coupling α [Fig. 3(a)]; however, a change in α
can be compensated by a shift of the electrochemical
potential μ → μþm�α2=2 [61]. By contrast, the topologi-
cal gap depends in a nontrivial way on α: It becomes
maximal around α ≈ 1.2 × 10−4c, close to experimental
values [24], and is strongly suppressed for α > 2 × 10−4c
for the experimentally relevant parameters used in Fig. 3(a)
for fixed μ. From Fig. 3(b), we see that it is crucial to tune
the electrochemical potential near zero if no phase bias is
applied, which requires a strong gate coupling, similar to
the situation for nanowires [35,36]. Finally, we find that a
stripe width LM of around 200 nm is optimal for a large
topological gap [Fig. 3(c)].

FIG. 2. Topological phase transition with increasing Zeeman
field EZ. The top pictograms illustrate the two cases studied here:
on the left a symmetric device (LL ¼ LR, class BDI) and on the
right an asymmetric top-gated device (LR ¼ 0, class D). The
upper panels show the topological invariantWZ in (a) andWZ2

in
(d). The middle panels (b) and (e) depict the 50 lowest
eigenenergies of Heffðx; yÞ [Eq. (4)]. Higher excited states form
a quasicontinuum in the light-blue shaded areas. Close-ups of the
midgap-mode energies are shown in the lower panels (c) and (f).
All parameters are as in Fig. 1(b).
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As mentioned before, breaking the generalized T sym-
metry can further increase the topological gap. For exam-
ple, the asymmetric, gated device [Fig. 3(d)] exhibits a
topological gap that can be larger by a factor of up to 2.
However, the gap can also be manipulated without breaking
the generalized T symmetry in a phase-biased device
[Fig. 3(e)]. Depending on the sign of the phase bias Δφ,
the direction of the supercurrent is reversed, which through
the spin-orbit term iασy∂x affects the spectrum differently
for a nonzero Zeeman term. This can both increase and
decrease the gap, which could be used to determine the sign
of α experimentally. Second, for both gating and phase
bias, the regime of MBSs can be reached for smaller
Zeeman energies [see LM ≈ 300 nm in Fig. 3(d) and Δφ ≈
−π in Fig. 3(e)].
Electrical control for MBS networks.—The above-

mentioned sensitivity of the phase-transition point suggests
the possibility to control the coupling of the MBSs electri-
cally. To illustrate this, we assume that the nearby top gate
creates a triangular confining potential for the MBSs
[Figs. 4(a) and 4(b)]. By increasing the potential drop
across the stripe by lowering Vg, the MBSs can be tuned
from localized boundary modes [Fig. 4(d)] at zero energy
into modes at finite energy and delocalized along the stripe
[Fig. 4(c)]. Controlling the MBS coupling with a gate can
be used for the initialization and readout of the MBSs also
in larger networks of MBS stripes. Readout requires a way
to detect the fermion parity of the MBSs, which can be
achieved by charge detection [69], possibly using an
auxiliary quantum dot [70].
To implement a qubit in a 2DEG structure, one can

segment the MBS stripe into two parts using a finger gate
[Fig. 4(e)]. Tuning this gate controls the coupling of the
MBSs in the middle (indicated by crosses), which could
be used to carry out fusion-rule and coherence-test experi-
ments [22,23]. Finally, in order to realize braiding of MBSs

similar to Refs. [18,20,22,23], one needs to couple three
MBSs. Our numerical simulations indicate [38] that the
topological phase is stable against a rotation of the
magnetic field of about 10° away from the stripe direction.
To keep the stripes in parallel, we suggest a “tuning-fork”
design [Fig. 4(f)] instead of a T-junction structure usually
considered for braiding.

FIG. 3. Enhancing the topological energy gap defined byEg≡minn;ky jEnðkyÞj, whereEnðkyÞ are the eigenenergies ofHeffðx;−i∂y→kyÞ
[see Eq. (4)]. The gap is shown as a function of the Zeeman energy EZ and (a) the spin-orbit velocity α, (b) the electrochemical potential μ,
(c),(d) the width of the stripe LM for a symmetric and asymmetric device, respectively, and (e) the phase difference φL ¼ −φR ¼ Δφ=2.
We use Nx ¼ 300 lattice points in (a), (b), and (e) but a finer resolution of Nx ¼ 3=2ðLL þ LM þ LRÞ½nm� for (c) and (d). If not varied,
all parameters are as in Fig. 1(b). The color scale is cut off at 50 μeV to enhance the contrast inside the regimes with a single MBS (we
inserted the number of MBSs, marked phase-separation lines with white arrows, and indicated the parameters used in all other plots
by white lines). We use absolute units, since various energy scales (Γ, Δ, μ,m�α2) are in the same range and different combinations of
them can govern the physics in the different regimes plotted.

FIG. 4. Electrically controlled manipulation of MBSs in 2DEG
devices. (a) Sketch of a MBS stripe whose width is controlled
by a linear voltage drop tuned by a top gate (G) with (b) the
corresponding low-energy spectrum. Below, we show the prob-
ability density Pðnx; nyÞ for the state closest to zero energy when
the MBSs are (c) coupled and (d) uncoupled. We use Nx ¼ Ny ¼
150 lattice points; all other parameters are as in Fig. 1(b). (e) By
segmenting a MBS stripe into two parts using a gate (T), one
could implement a qubit consisting of four MBSs (denoted by
crosses). The intraisland coupling of the MBSs could be tuned by
fusion gates (F1) and (F2) and the interisland coupling by the
tunneling gate (T). For readout, the two gates (P1) and (P2) allow
for coupling to two detectors (D1) and (D2). (f) Braiding setup
with two gates (T1) and (T2) controlling the tunnel coupling
between the three center MBSs.
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Conclusion and outlook.—We have shown that 2DEG
structures with strong spin-orbit coupling, proximity-
induced superconductivity, and magnetic fields provide
an alternative platform hosting MBSs that is readily
available in the lab. A phase bias generated, e.g., by a
supercurrent or a gate electrode allows us to move the
phase-transition point in situ and to couple the MBSs by
electrical means. Together with the technological advantage
of flexible top-down fabrication of 2DEG structures, this
might open the door for larger MBS networks. Recently, a
preprint on a similar device appeared [61]. Differences are
due to different parameter choices [38].
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