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We experimentally reveal the emergence of edge states in a photonic lattice with orbital bands. We use a
two-dimensional honeycomb lattice of coupled micropillars whose bulk spectrum shows four gapless bands
arising from the coupling of p-like photonic orbitals. We observe zero-energy edge states whose topological
origin is similar to that of conventional edge states in graphene. Additionally, we report novel dispersive edge
states in zigzag and armchair edges. The observations are reproduced by tight-binding and analytical
calculations, which we extend to bearded edges. Our work shows the potentiality of coupled micropillars in
elucidating some of the electronic properties of emergent two-dimensional materials with orbital bands.
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Boundary modes are a fundamental property of finite-
size crystals. They play an important role in the electronic
transport and in the magnetic properties of low-dimensional
materials [1–4]. Their existence has long been related to the
microscopic details of the edge of the crystal [5–7]. Recent
advances in the study of topological physics have revealed
that, for topologically nontrivial materials, the existence of
surface states is directly related to the properties of the bulk
[8–10]. This is the case of conduction electrons in graphene
[11–13], in which the nearest neighbor coupling of the
cylindrically symmetric pz orbitals of the carbon atoms
gives rise to two bands (here labeled s bands) crossing in
an ungapped spectrum (Dirac cones). The localized edge
modes in this system exist for any type of termination
except for armchair [14,15]. They are topologically pro-
tected by the chiral symmetry of the honeycomb lattice, and
their existence can be predicted by calculating the winding
number of the bulk wave functions [11–13].
In 2007, Wu and coworkers proposed an orbital version of

graphene by considering a honeycomb lattice with px;y

orbitals in each lattice site [16,17]. The strong spatial
anisotropy of the orbitals results in four ungapped bands
with distinct features: two bands showing Dirac crossings
and two flat bands, which were first reported experimentally
in a polariton-based photonic simulator [18]. The interest in
this kind of orbital Hamiltonian has taken a new thrust due to
the rapid emergence of two-dimensional materials [19], such
as black phosphorus [20–22] and two-dimensional transition
metal dichalcogenides [23], whose bands originate from
spatially anisotropic atomic orbitals. Edge states in MoS2
flakes have been observed [24], and recent works aim at
quantifying their impact in the transport properties [25].
Edge states in orbital modes have also been studied
theoretically in connection to d-wave superconductivity

[11,26] and spin-orbit coupling in superlattices of nano-
crystals [27], systems very hard to realize experimentally
with tuneable parameters. A photonic simulator of orbital
bands would open the door to the study of the microscopic
properties of orbital edge states [28] and the connection to
the topological properties of orbital bulk bands. In a more
general framework, it would provide a platform to simulate
some aspects of orbital bands which are essential in various
topological insulators with band inversion [29].
In this Letter we report the experimental observation

of edge states in the px;y orbital bands of a honeycomb
lattice made out of coupled micropillars etched in a planar
microcavity. The advantage of this system over other
photonic simulators, such as coupled waveguides [30,31]
or microwave resonators [32], is that the radiative emission
of light from the micropillars provides direct optical access
to both the spatial distribution of the wave functions and to
the energy-momentum dispersions [33]. We find two kinds
of edge states: (i) zero-energy states in the zigzag and
bearded edges, with a topological origin similar to that of
edge states in conventional graphene; and (ii) a novel kind
of dispersive edge state that emerges not only in zigzag
and bearded terminations, but also in armchair edges. We
support experimental data with numerical tight-binding
calculations and provide analytical expressions for the
energy of the dispersive edge states.
To experimentally study orbital edge states in px;y

bands we employ the polaritonic honeycomb lattice
reported in [18,34] and shown in Fig. 1(c). The sample
is a two-dimensional heterostructure made out of a
Ga0.05Al0.95As λ=2 cavity embedded in two
Ga0.05Al0.95As=Ga0.8Al0.2As Bragg mirrors with 28 (40)
top (bottom) pairs with twelve GaAs quantum wells grown
at the three central maxima of the electromagnetic field
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confined in the heterostructure. The exciton resonance is
17 meV above the cavity mode at k ¼ 0, and the exciton
photon coupling results in a 15 meV Rabi splitting. After the
molecular beam epitaxy growth, the cavity is processed by
electron beam lithography and dry etching into a honeycomb
lattice of overlapping micropillars (diameter 3 μm, center-to-
center distance a ¼ 2.4 μm). As shown in Fig. 1(c), both
zigzag and armchair terminations were fabricated. The
lowest energy level of each micropillar [Figs. 1(a) and
1(b)] is cylindrically symmetric, similarly to the pz orbitals
in graphene. The hopping of photons in these modes [35]
gives rise to the π and π� bands of graphene, whose edge
states have been experimentally reported in the same
structure [34]. The first excited state is made of two
antisymmetric modes, px;y, oriented in orthogonal directions
in the horizontal plane, as sketched in Fig. 1(d).
The characterization of the bulk band structure is

performed at 10 K in the linear regime by exciting the
center of the lattice with a low power (5 mW) nonresonant
laser (740 nm), focused on a 4 μm diameter excitation spot.
This provides incoherent excitation of all modes with a
nonvanishing spatial overlap with the pump. The same
microscope objective is used both to excite and to collect
the emission [36]. Figure 1(e) displays the photolumines-
cence spectrum as a function of momentum parallel to the
vertical edge, ky, for kx ¼ 4π=ð3aÞ; we select the emission
linearly polarized along the same direction. The dispersion
shows four bulk bands corresponding to the coupling of the
px;y orbitals (the s bands, lying at lower energy, are not
shown) [18]. The lowest band is almost flat, while the two
middle ones are strongly dispersive with two band cross-
ings similar to those at the K and K’ Dirac points in
graphene s bands. The highest energy band corresponds
to a deformed flat band [18]. The inhomogeneity in the
emitted intensity is the consequence of (i) the energy
relaxation efficiency and lifetime of photons in different

modes, and (ii) destructive interference in the far-field
emission along certain high-symmetry directions
[18,38,39]. Such a destructive interference effect is the
reason why we select the value of kx ¼ 4π=ð3aÞ instead of
the equivalent kx ¼ 0, where the emission intensity is
strongly reduced. Tight-binding simulations, including
coupling of the photons out of the cavity, nicely reproduce
the observed emission pattern [36].
To access the edge states we place the spot on the

outermost pillar of the zigzag edge. The measured dispersion
is shown in Fig. 1(f). In addition to the bulk modes, new
bands are evidenced, marked with yellow and black dashed
lines in the figure. Those marked in yellow are flat and show
up at the center of both the first and adjacent Brillouin zones,
at the energy of the Dirac crossings. Those in black dashed
lines lie between the bulk dispersive and flat bands and have
a marked dispersive character. These states are delocalized in
momentum space in the direction perpendicular to the edge,
appearing at the very same energy for any value of kx (not
shown here) and, as we see below, they are localized in real
space at the edges. This is different from the bulk bands in
Fig. 1(e), which change energy when probing different
values of kx and are delocalized in real space. Note that
the polarization dependent confinement of the outermost
micropillars [34] and the transverse electric-transverse mag-
netic (TE-TM) splitting characteristic of semiconductor
microcavities [40] may account for the observed splitting
in the lowest flat band and in the edge states at around
ky ¼ �1.5½2π=ð3 ffiffiffi

3
p

aÞ�, black dashed lines in Fig. 1(f).
The px;y orbital bands can be described by a tight-

binding Hamiltonian [17,18]. If we assume that only the
hopping via orbitals projected along the links connecting
the micropillars is significant jtLj ≫ jtT j, see Fig. 1(d), the
Hamiltonian in the ax, ay, bx, by basis, corresponding to the
px;y orbitals of the A and B sublattices, can be written in
momentum space in the following 4 × 4 form:
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FIG. 1. (a) Scanning electron microscope image of a single micropillar. The red lines sketch the position of the quantum wells
embedded in the cavity (depicted in green). (b) Corresponding momentum space spectra showing confined s and p-modes. (c) Optical
microscope photograph of the honeycomb lattice under study showing two types of edges. The inset shows a scanning electron
microscope image. (d) Sketch of the px;y orbital (blue and yellow, respectively) and their couplings along the link (tL) and perpendicular
to it (tT ). [(e) and (f)] Momentum space luminescence from the bulk (e) and the zigzag edge (f) for kx ¼ 4π=ð3aÞ. K and K’ mark the
positions of the Dirac cones. Yellow and black dashed lines surround photoluminescence from edge states. E0 ¼ 1573 meV and
tL ¼ −1.2 meV. (g) Tight-binding calculation of the band structure. Blue lines, bulk energy bands at kx ¼ 4π=ð3aÞ; red lines, edge
states obtained for a nanoribbon with zigzag edges. All calculations are for tT ¼ 0.
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Ĥp ¼ −tL
�
02×2 Q†

Q 02×2

�
; with

Q ¼
�
f1 g

g f2

�
; ð1Þ

where f1 ¼ 3
4
ðeik·u1 þ eik·u2Þ, f2 ¼ 1þ 1

4
ðeik·u1 þ eik·u2Þ,

and g ¼ ð ffiffiffi
3

p
=4Þðeik·u1 − eik·u2Þ; u1;2 are primitive vectors

and tL < 0, to account for the antisymmetric phase distri-
bution of the p orbitals. To later describe finite-size samples,
we make a choice of unit cell dimer and primitive vectors
such that it allows the full reconstruction of the lattice
including its specific edges. We take the primitive vectors
as follows: u1 ¼ a1, u2 ¼ a1 − a2 for zigzag edges, and
u1 ¼ a1, u2 ¼ a2 for bearded and armchair, given in terms
of the reference vectors a1;2 defined in Fig. 1(d); the
corresponding unit cell dimers are detailed in Ref. [36].
The diagonalization of Hamiltonian (1) gives rise to two

flat bands with energies � 3
2
tL, and two dispersive bands

with energies � 2
3
tLj detQj, that is [16]

� tL
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2 cosð

ffiffiffi
3

p
kyaÞ þ 4 cosð3kxa=2Þ cosð

ffiffiffi
3

p
kya=2Þ

q
:

ð2Þ

Figures 1(e) and 1(f) are well described by a value of
tL ¼ −1.2 meV, significantly larger than the measured
linewidth (≈150 μeV) and on-site energy disorder
(≈30 μeV, as measured in a similar one-dimensional struc-
ture [41]). To account for the edge bands experimentally
reported in Fig. 1(f) we compute the eigenmodes of
Hamiltonian (1) in a finite-size sample. We consider a
nanoribbon with zigzag terminations on both edges and
periodic boundary conditions along the direction parallel to
the edge. The bulk modes, blue lines in Fig. 1(g), are the
analytic result [Eq. (2)] and are delocalized all over the
ribbon, while the red lines in Fig. 1(g) are edge states,
calculated on a finite-size system, whose wave function
exponentially decays. The spread in momentum and the
position in energy match quantitatively the experimental
observations, particularly for the modes at and below the
Dirac cones. In the experiment, the high energy part of the
spectrum is deformed due to the coupling to higher modes,
and to the nonzero value of tT , whose strength increases with
energy [18].
Tight-binding calculations for nanoribbons with zigzag,

bearded, and armchair edges are shown in Fig. 2. Two kinds
of edge modes are visible: (i) bands of zero-energy modes
in the central gap, present in zigzag and bearded edges,
and (ii) dispersive modes in the upper and lower gaps in all
three types of edges, and in the middle gap of the armchair
termination.
We first analyze the zero-energy edge modes. They recall

strongly the edge modes in the π and π� bands of regular
graphene, whose existence can be related to the winding

number of the wave functions in momentum space [11–13].
The Hamiltonian describing graphene (s bands) is a chiral
2 × 2 Hamiltonian,

Ĥs ¼ −ts
�

0 f�s
fs 0

�
; ð3Þ

with ts > 0 being the hopping amplitude for the s orbitals
and the factor fs ¼ 1þ eik·u1 þ eik·u2. The unit cell vectors
u1;2 contain the information about the considered edge, as
discussed above. The number of zero-energy edge states is
determined by the winding of the phase of the off-diagonal
component [fs ¼ jfsjeiϕðkÞ] [11–13],

Wðk∥Þ ¼
1

2π

Z
BZ

∂ϕðkÞ
∂k⊥ dk⊥; ð4Þ

where the one-dimensional integration over k⊥ is per-
formed along a loop around the Brillouin zone in a
direction perpendicular to the considered edge.
This analysis can be extended to more general

situations: the existence of zero-energy modes can be
related to the winding properties of the Hamiltonian in
the following way. By fixing a value of k∥, the dependence
of Hamiltonian (1) on k⊥ can be regarded as a one-
dimensional model in the BDI (chiral orthogonal) class
of the classification of topological insulators introduced by
Schnyder et al. [10]. For this class, the number of pairs of
zero-energy edge modes is given by the winding of the
phase ϕ obtained from fp ≡ detQ ¼ j detQjeiϕðkÞ [42].
Figure 2 shows the value of Wðk∥Þ for the p bands as a
function of momenta parallel to the edge k∥ for the three
types of edge considered here [36]. The winding number
Wðk∥Þ matches with the number of the zero-energy modes
calculated by diagonalization of the Hamiltonian.
An interesting feature of Fig. 2 is that the regions in

momentum space where the zero-energy modes are present
in the zigzag edge (k∥ ∈ ½−2π=ð3 ffiffiffi

3
p

aÞ, 2π=ð3 ffiffiffi
3

p
aÞ�)

are complementary to the regions in which they are

2
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FIG. 2. Calculated eigenmodes in the first Brillouin zone for a
nanoribbon as a function of the wave vector k∥ parallel to the
edges, with (a) zigzag (k∥ ¼ ky), (b) bearded (k∥ ¼ ky), and
(c) armchair (k∥ ¼ kx) terminations. Blue curves: bulk spectra for
different values of the transverse momentum k⊥. Red and green
curves: edge states. For bearded edges, the inset shows the
uncoupled py orbitals that give rise to a pair of edge states
spreading over all k∥.
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present in s-band graphene for the same kind of edge
(k∥∉½−2π=ð3

ffiffiffi
3

p
aÞ; 2π=ð3 ffiffiffi

3
p

aÞ�). A similar situation takes
place for the bearded edges: in the p bands, pairs of edge
modes appear in the region in k space complementary to the
regions where they appear in the s bands. Additionally, for
bearded terminations, the p bands show an extra pair of
zero-energy edge modes spread all over k∥. It arises from
dangling py orbitals fully localized in the outermost
pillars, uncoupled to the bulk, as sketched in the inset of
Fig. 2(b), and adds to the pair of edge states discussed
above. The armchair edge does not have any zero-energy
edge mode.
The complementarity in the position in momentum space

of zero-energy edge modes between s and p bands can be
understood by analyzing the symmetry of Hamiltonians (1)
and (3), for the p and the s bands, respectively. The
expressions fp and fs, whose winding determines the
existence of zero-energy edge modes, can be related
analytically,

fpðzigzagÞ ¼
3

4
eik·ða1−a2ÞfsðbeardedÞ ð5Þ

fpðbeardedÞ ¼
3

4
eik·a2fsðzigzagÞ; ð6Þ

where fsðzigzagÞ½fpðbeardedÞ� is written using the
choice of unit cell that corresponds to the zigzag (bearded)
edge [13]. A consequence of Eq. (5) is that the winding of
the phase of fpðzigzagÞ is the same as of fsðbeardedÞ [the
vector a1 − a2 is parallel to the edge, so the prefactor
of the right-hand part of Eq. (5) gives no winding in the
orthogonal direction]. A similar situation takes place for
Eq. (6): in addition to the exchange of the position between
zigzag and bearded edge states, of respectively, s and p
bands, the phase factor eika2 provides an extra winding over
the whole Brillouin zone, and gives rise to an extra pair of
edge state for all values of kx, in the bearded edges of the
p bands.
One of the most distinctive features of Figs. 1 and 2 is

the observation of additional dispersive edge modes
between the dispersive and the flat bands of the bulk.
These modes are present for all values of k∥ and for all
the investigated types of edges. We can obtain analytical
expression of the dispersive edge modes by searching
for solutions of the Hamiltonian with an exponential
decay into the bulk [ψðxÞ ∼ e−x=ξ, ξ being the penetration
length], using the treatment described in Refs. [2,32].
Applying this method to zigzag and bearded edges,
we find the following eigenenergies for the edge modes
[36]:

Ezigzag
disp edgeðk∥Þ ¼ �tL

ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cos ð

ffiffiffi
3

p
k∥aÞ

q
ð7Þ

Ebearded
disp edgeðk∥Þ ¼ �tL

ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 2 cos ð ffiffiffi

3
p

k∥aÞ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − cos ð ffiffiffi

3
p

k∥aÞ
q : ð8Þ

As evidenced in Fig. 2(c), dispersive edge states exist
also for armchair terminations, which do not contain any
edge modes in the case of regular electronic graphene.
The analytic calculation for the armchair edges is more
elaborate [43]: the decay of the wave function is not a simple
exponential but it involves two different penetration lengths.
We take advantage of our photonic simulator to explore

the spatial distribution of these novel edge modes. Figure 3
shows the real space emission from the photonic simulator
excited close to the armchair edge for three emission
energies, corresponding to three different dispersive edge
states indicated in Fig. 2(c) (see Ref. [36] for the exper-
imental dispersion of the armchair edge modes). We
employ a pump spot of 20 μm in diameter, allowing the
measurement of the wave functions of the edge modes,
which penetrate several microns into the bulk.
For the lowest-energy dispersive edge state [Fig. 3(a)],

the emission is localized in the second to the last row of
micropillars, with a gradual decrease towards the bulk.
These features along with the lobe structure are well
reproduced by the plot of the tight-binding solution for
the edge state at the corresponding energy [kx ¼ π=ð3aÞ;
Fig. 3(d)]. Figure 3(b) shows the emission pattern for the
lowest-energy edge mode in the central gap. In this case,
the outermost pillars show the highest intensity, in a pattern
significantly different from the modes shown in Figs. 3(a)
and 3(d). It is worth noting that in the experiment, the
energy of the emission is filtered with the use of a
spectrometer, but no particular in-plane momentum is
selected. Therefore, bulk modes contribute to the emission
at the energies studied in Figs. 3(a)–3(c), explaining the

(a) (b) (c)
armchair edge

(e) (f)

0

1

(d)

FIG. 3. Real space emission from dispersive edge states in an
armchair termination. [(a)–(c)] Measured photoluminescence
when selecting the energies indicated with circles in Fig. 2(c).
[(d)–(f)] Corresponding tight-binding eigenfunctions. A hexago-
nal lattice is sketched on top of the data to mark the position of the
center of the micropillars.
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differences with the calculated individual eigenfunctions
depicted in Figs. 3(d)–3(f).
Interestingly, the tight-binding calculations in Fig. 2(c)

reveal an additional edge mode within the bulk energy band
(green dot). Despite being immersed in the bulk band, when
selecting the emission at the highest energy of this mode,
the experiment and tight-binding calculations shown in
Figs. 3(c) and 3(f) attest to the significant localization of
these modes in the edge region.
In summary, our results provide a detailed characteri-

zation of the zero-energy and dispersive orbital edge states
in excited bands of a photonic honeycomb lattice. The
zero-energy modes are well described using topological
arguments based on the symmetries of the bulk
Hamiltonian. Whether any topological argument can be
applied to the dispersive edge modes is an intriguing
question. Our experiments and theoretical analysis pro-
vide insights into multimode lattice systems such as
transition metal dichalcogenides [23] or mechanical lat-
tices of springs and masses, which have been predicted to
show similar dispersive edge modes [42,44]. Taking
advantage of the intrinsic nonlinearities of polaritons,
honeycomb lattices of coupled micropillars appear as
excellent candidates to explore nonlinear bulk and edge
states with orbital structure [45].

This work was supported by the French National
Research Agency (ANR) program Labex NanoSaclay
via the projects Qeage (Grant No. ANR-11-IDEX-0003-
02) and ICQOQS (Grant No. ANR-10-LABX-0035),
the French RENATECH network, the ERC grants
Honeypol and QGBE, the EU-FET Proactiv grant AQUS
(Project No. 640800), and by the Provincia Autonoma di
Trento, partially through the project “On silicon chip
quantum optics for quantum computing and secure
communications—SiQuro”.

[1] K. Nakada, M. Fujita, G. Dresselhaus, andM. S. Dresselhaus,
Phys. Rev. B 54, 17954 (1996).

[2] M. Kohmoto and Y. Hasegawa, Phys. Rev. B 76, 205402
(2007).

[3] Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc.
130, 16739 (2008).

[4] Y. Li, W. Zhang, M. Morgenstern, and R. Mazzarello, Phys.
Rev. Lett. 110, 216804 (2013).

[5] W. Shockley, Phys. Rev. 56, 317 (1939).
[6] I. Tamm, Zeitschrift für Physik 76, 849 (1932).
[7] J. Zak, Phys. Rev. B 32, 2218 (1985).
[8] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[9] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

[10] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,
Phys. Rev. B 78, 195125 (2008).

[11] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).
[12] R. S. K. Mong and V. Shivamoggi, Phys. Rev. B 83, 125109

(2011).

[13] P. Delplace, D. Ullmo, and G. Montambaux, Phys. Rev. B
84, 195452 (2011).

[14] Y. Kobayashi, K.-i. Fukui, T. Enoki, K. Kusakabe, and Y.
Kaburagi, Phys. Rev. B 71, 193406 (2005).

[15] J. Lado, N. García-Martínez, and J. Fernández-Rossier,
Synth. Met. 210, 56 (2015).

[16] C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Phys.
Rev. Lett. 99, 070401 (2007).

[17] C. Wu and S. Das Sarma, Phys. Rev. B 77, 235107 (2008).
[18] T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D.

Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J.
Bloch, and A. Amo, Phys. Rev. Lett. 112, 116402 (2014).

[19] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R.
Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach,
E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D.
Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi,
M. G. Spencer, M. Terrones, W. Windl, and J. E.
Goldberger, ACS Nano 7, 2898 (2013).

[20] J.-H. P. Churchill and O. H. Hugh, Nat. Nanotechnol. 9, 330
(2014).

[21] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H.
Chen, and Y. Zhang, Nat. Nanotechnol. 9, 372 (2014).

[22] X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus,
Proc. Natl. Acad. Sci. U.S.A. 112, 4523 (2015).

[23] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H.
Castro Neto, Science 353 (2016).

[24] M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K.
Nørskov, S. Helveg, and F. Besenbacher, Phys. Rev. Lett.
87, 196803 (2001).

[25] M. Trushin, E. J. R. Kelleher, and T. Hasan, Phys. Rev. B 94,
155301 (2016).

[26] S. Ryu and Y. Hatsugai, Physica (Amsterdam) 388C, 90
(2003).

[27] E. Kalesaki, C. Delerue, C. Morais Smith, W. Beugeling, G.
Allan, and D. Vanmaekelbergh, Phys. Rev. X 4, 011010
(2014).

[28] C. Segarra, J. Planelles, and S. E. Ulloa, Phys. Rev. B 93,
085312 (2016).

[29] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science
314, 1757 (2006).

[30] Y. Plotnik, M. C. Rechtsman, D. Song, M. Heinrich, J. M.
Zeuner, S. Nolte, Y. Lumer, N. Malkova, J. Xu, A. Szameit,
Z. Chen, and M. Segev, Nat. Mater. 13, 57 (2014).

[31] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor,
Nat. Photonics 7, 1001 (2013).

[32] M. Bellec, U. Kuhl, G. Montambaux, and F. Mortessagne,
New J. Phys. 16, 113023 (2014).

[33] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299
(2013).

[34] M. Milićević, T. Ozawa, P. Andreakou, I. Carusotto, T.
Jacqmin, E. Galopin, A. Lemaître, L. Le Gratiet, I. Sagnes,
J. Bloch, and A. Amo, 2D Mater. 2, 034012 (2015).

[35] M. Galbiati, L. Ferrier, D. D. Solnyshkov, D. Tanese, E.
Wertz, A. Amo, M. Abbarchi, P. Senellart, I. Sagnes, A.
Lemaitre, E. Galopin, G. Malpuech, and J. Bloch, Phys.
Rev. Lett. 108, 126403 (2012).

[36] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.107403, which in-
cludes Ref. [37], for a description of the experimental setup,
measured dispersions for the armchair edge, driven-
dissipative simulations, and analytical results on the
dispersion of zigzag and bearded edge states.

PRL 118, 107403 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 MARCH 2017

107403-5

http://dx.doi.org/10.1103/PhysRevB.54.17954
http://dx.doi.org/10.1103/PhysRevB.76.205402
http://dx.doi.org/10.1103/PhysRevB.76.205402
http://dx.doi.org/10.1021/ja805545x
http://dx.doi.org/10.1021/ja805545x
http://dx.doi.org/10.1103/PhysRevLett.110.216804
http://dx.doi.org/10.1103/PhysRevLett.110.216804
http://dx.doi.org/10.1103/PhysRev.56.317
http://dx.doi.org/10.1007/BF01341581
http://dx.doi.org/10.1103/PhysRevB.32.2218
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevLett.89.077002
http://dx.doi.org/10.1103/PhysRevB.83.125109
http://dx.doi.org/10.1103/PhysRevB.83.125109
http://dx.doi.org/10.1103/PhysRevB.84.195452
http://dx.doi.org/10.1103/PhysRevB.84.195452
http://dx.doi.org/10.1103/PhysRevB.71.193406
http://dx.doi.org/10.1016/j.synthmet.2015.06.026
http://dx.doi.org/10.1103/PhysRevLett.99.070401
http://dx.doi.org/10.1103/PhysRevLett.99.070401
http://dx.doi.org/10.1103/PhysRevB.77.235107
http://dx.doi.org/10.1103/PhysRevLett.112.116402
http://dx.doi.org/10.1021/nn400280c
http://dx.doi.org/10.1038/nnano.2014.85
http://dx.doi.org/10.1038/nnano.2014.85
http://dx.doi.org/10.1038/nnano.2014.35
http://dx.doi.org/10.1073/pnas.1416581112
http://dx.doi.org/10.1126/science.aac9439
http://dx.doi.org/10.1103/PhysRevLett.87.196803
http://dx.doi.org/10.1103/PhysRevLett.87.196803
http://dx.doi.org/10.1103/PhysRevB.94.155301
http://dx.doi.org/10.1103/PhysRevB.94.155301
http://dx.doi.org/10.1016/S0921-4534(02)02665-5
http://dx.doi.org/10.1016/S0921-4534(02)02665-5
http://dx.doi.org/10.1103/PhysRevX.4.011010
http://dx.doi.org/10.1103/PhysRevX.4.011010
http://dx.doi.org/10.1103/PhysRevB.93.085312
http://dx.doi.org/10.1103/PhysRevB.93.085312
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1038/nmat3783
http://dx.doi.org/10.1038/nphoton.2013.274
http://dx.doi.org/10.1088/1367-2630/16/11/113023
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1088/2053-1583/2/3/034012
http://dx.doi.org/10.1103/PhysRevLett.108.126403
http://dx.doi.org/10.1103/PhysRevLett.108.126403
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.107403
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.107403
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.107403
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.107403
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.107403
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.107403
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.107403


[37] T. Ozawa and I. Carusotto, Phys. Rev. Lett. 112, 133902
(2014).

[38] E. L. Shirley, L. J. Terminello, A. Santoni, and F. J. Himpsel,
Phys. Rev. B 51, 13614 (1995).

[39] A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg,
Nat. Phys. 3, 36 (2007).

[40] G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. S.
Skolnick, V. N. Astratov, J. S. Roberts, A. V. Kavokin, M. R.
Vladimirova, and M. A. Kaliteevski, Phys. Rev. B 59, 5082
(1999).

[41] F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin, A.
Lemaître, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E.
Türeci, A. Amo, and J. Bloch, Phys. Rev. Lett. 116,
066402 (2016).

[42] C. L. Kane and T. C. Lubensky, Nat. Phys. 10, 39 (2013).
[43] T. Ozawa et al. (to be published).
[44] Y.-T. Wang, P.-G. Luan, and S. Zhang, New J. Phys. 17,

073031 (2015).
[45] M. Di Liberto, A. Hemmerich, and C. Morais Smith, Phys.

Rev. Lett. 117, 163001 (2016).

PRL 118, 107403 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 MARCH 2017

107403-6

http://dx.doi.org/10.1103/PhysRevLett.112.133902
http://dx.doi.org/10.1103/PhysRevLett.112.133902
http://dx.doi.org/10.1103/PhysRevB.51.13614
http://dx.doi.org/10.1038/nphys477
http://dx.doi.org/10.1103/PhysRevB.59.5082
http://dx.doi.org/10.1103/PhysRevB.59.5082
http://dx.doi.org/10.1103/PhysRevLett.116.066402
http://dx.doi.org/10.1103/PhysRevLett.116.066402
http://dx.doi.org/10.1038/nphys2835
http://dx.doi.org/10.1088/1367-2630/17/7/073031
http://dx.doi.org/10.1088/1367-2630/17/7/073031
http://dx.doi.org/10.1103/PhysRevLett.117.163001
http://dx.doi.org/10.1103/PhysRevLett.117.163001

