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We develop an effective medium theory for electromagnetic wave propagation through gapless
nonuniform systems with a dynamic chiral magnetic effect. The theory allows us to calculate macro-
scopic-disorder-induced corrections to the values of optical, as well as chiral magnetic conductivities. In
particular, we show that spatial fluctuations of the optical conductivity induce corrections to the effective
value of the chiral magnetic conductivity. The absolute value of the effect varies strongly depending on the
system parameters, but yields the leading frequency dependence of the polarization rotation and circular
dichroism signals. Experimentally, these corrections can be observed as features in the Faraday rotation
angle near frequencies that correspond to the bulk plasmon resonances of a material. Such features are not
expected to be present in single-crystal samples.
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Ignited by the field of topological insulators, interest in
the geometric properties of band structures has spread to
gapless systems now. Among the latter, Weyl semimetals
seem to have attracted the largest attention, partly due to
their nontrivial topological properties [1–6], and partly due
to the experimental verification of their existence [7–14].
There have been a substantial number of theoretical

proposals on how the geometric properties of Weyl metals
manifest themselves in observable experimental quantities
related, for instance, to magnetotransport [15–19], nonlocal
transport [20,21], or strain [22–25] phenomena. However,
in Weyl systems, or gapless topological systems in general,
one necessarily deals with systems with a gapless bulk.
This means that, at least in principle, they manifest all
responses pertinent to a more mundane metal with the same
symmetries. This implies that a careful quantitative under-
standing of various experiments is required in order to
disentangle the geometric features of the observed
responses. In particular, the omnipresent disorder effects
must always be carefully studied.
In this Letter, we describe how macroscopic sample

inhomogeneities affect optical tests of the dynamic chiral
magnetic effect via Faraday rotation measurements. We
show that in thin films of metals with low carrier concen-
tration, macroscopic fluctuations of the local conductivity
affect the frequency dependence of the measured optical
polarization rotation signal, creating sharp features near the
plasma edge of themetal, which are absent in single crystals.
The chiral magnetic effect (CME) is defined as the

existence of a contribution to the electric current density j,
driven by a magnetic field B, which yields the following
expression for the electric current density in the simplest
isotropic case:

jðωÞ ¼ σðωÞEðωÞ þ γðωÞBðωÞ: ð1Þ

The first term on the right-hand side of Eq. (1) represents
the usual optical conductivity response to an electric field
E. The coefficient γðωÞ is in general nonzero in non-
centrosymmetric crystals with gyrotropic point groups [26].
Its possible tensorial properties are discussed below. The
ω → 0 limit of γðωÞ, which can be nonzero in a metal, is
known as the chiral magnetic conductivity in the literature.
Here, we consider a more general case of a frequency-
dependent γðωÞ, keeping the name of the chiral magnetic
conductivity for it.
There are two basic types of the CME, pertaining to the

cases of a purely static, and a slowly oscillating B field,
which are appropriately called the static and dynamic
CME, respectively.
The static CME is of purely topological origin, and relies

on the existence of Weyl points, and the Berry curvature
monopoles associated with them, in a band structure
[15,27–31]. However, the static CME does not occur in
equilibrium crystals [32,33]: it requires an imbalance
between the chemical potentials near Weyl points with
opposite signs of the Berry monopole charges. This imbal-
ance is in general hard to achieve, but when it is reached via
the chiral anomaly, the static CME manifests itself either as
the negative longitudinal magnetoresistance [15,17,34], or
nonlocal voltages in thin film samples [20]. In this sense, the
static CME has been observed via magnetotransport mea-
surements in Refs. [35–38] (see Refs. [39,40] for further
references and a review of recent results), and via nonlocal
voltage measurements in Ref. [41].
Here, we focus on the dynamic CME, which does exist in

equilibrium gyrotropic metals, and describes their linear
response to slowly oscillating electromagnetic fields. Its
low-frequency limit is of geometric origin: it comes from
the local geometry of electronic bands, rather than their
topology, and is due to the existence of the orbital magnetic
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moment of quasiparticles in systems with nonzero Berry
curvature [42–44]. It also does not require the existence of
Berry monopoles, but tends to be large when the monop-
oles are present [42,45].
Physically, the dynamic CME is a particular manifesta-

tion of the natural optical activity phenomenon [42,43].
This observation prompts an experimental measurement
of the chiral conductivity γðωÞ by studying the Faraday
rotation of the polarization of light transmitted through a
slab of gyrotropic material.
The (complex) polarization rotation angle is determined

solely by the phase difference accumulated by the two
circular polarizations of light as they travel through the bulk
of the material [46]:

θðωÞ ¼ μ0
2
γðωÞd; ð2Þ

where d is the thickness of the slab in the propagation
direction. The rotation angle is not affected by possible
surface conduction, either [47]. Therefore, the Faraday
rotation appears to be the most direct way to measure γðωÞ.
Here, we show that macroscopic inhomogeneities make

the effective macroscopic observable γeffðωÞ different from
its value predicted by the band structure calculations,
γBSðωÞ. In particular, γeffðωÞ has sharp features around
the plasma edge of the metal, which is not expected for
γBSðωÞ. Instead, at frequencies large compared to the inverse
momentum relaxation time on the Fermi surface, and small
compared to the lowest interband splitting at the Fermi
surface, γBSðωÞ is a real frequency-independent constant
[42]. More generally, when the frequency of the incident
light is not small compared to relevant band splittings,
γBSðωÞ does depend onω, but obviously is still not expected
to have any features at the plasma edge of a metal.
In what follows, we set out to construct the effective

medium theory for a macroscopically disordered sample
with the CME. The effective medium theory for composite
materials, and metals in particular, has been developed over
the past century [48–51], but it has not been constructed for
metals with natural optical activity. We fill this void below.
General formalism.—We assume that a nonuniform

sample is characterized by macroscopic inhomogeneities,
which occur on length scales large compared to the
microscopic ones, like the Fermi wavelength, or elastic
mean free path. The sample is then characterized by a
space-dependent (optical) conductivity σabðr;ωÞ and the
CME tensor γabcðr;ωÞ.
If the variation of electromagnetic fields is slow on the

scale over which the response coefficients change, the
electromagnetic response of a medium can be described in
terms of an effective medium theory, characterized by an
effective translationally invariant (nonlocal) optical con-
ductivity tensor. The determination of this effective tensor
in the presence of the CME is the central aim of this Letter.
In general, the space-dependent response coefficients

can be decomposed into the sums of their volume-averaged

parts, denoted with overlines, and random parts with zero
averages:

σabðr;ωÞ ¼ σ̄abðωÞ þ δσabðr;ωÞ;
γabcðr;ωÞ ¼ γ̄abðωÞ þ δγabcðr;ωÞ: ð3Þ

Since the CME is a relatively weak effect, and spatial
fluctuations of δγabc will lead to even weaker effects, we
set δγabc → 0 in what follows.
It should be stressed that the variation of γabc is

inevitably present near sample boundaries; however, this
variation does not play any role in the effective medium
construction, and only affects the boundary conditions for
electromagnetic waves scattering off a sample with the
CME or natural optical activity [52,53].
In what follows, we assume ergodic behavior for

fluctuations of the response coefficients, in the sense that
volume averages for various quantities coincide with their
ensemble averages over disorder realizations. Physically,
this means that we neglect the mesoscopic fluctuations of
effective medium parameters.
To construct the effective medium theory, we use the

Maxwell equations to describe the sample-specific
response of a disordered material to electromagnetic fields,
and then average it over the disorder realizations. The
electromagnetic response of the medium is fully deter-
mined by its nonlocal optical conductivity tensor. To the
lowest order in the spatial gradients of the electric field,
one has the following expression for the ath component of
the current density in a nonuniform chiral metal:

ja ¼ σabðr;ωÞEb þ
i
ω
γabcðωÞ∇cEb: ð4Þ

This expression is the anisotropic version of Eq. (1) in view
of Faraday’s law for monochromatic fields,B ¼ ∇ ×E=iω.
It is well known that, in a time-reversal system, the
antisymmetric part of the optical conductivity tensor is fully
determined by the spatial gradients of γabc [52]. Since we
take γabcðωÞ to be equal to its spatially averaged (equally,
disorder-averaged) value, σabðr;ωÞ is a symmetric local
conductivity tensor.
To proceed, we make several simplifying assumptions,

which are easily relaxed within the theory developed below,
but increase the clarity of the presentation. We go back
to the assumption that the medium is isotropic; hence,
σab ¼ σδab, γabc ¼ γϵabc. Under these assumptions, the
expression for the current density simplifies to

j ¼ ½σðωÞ þ δσðω; rÞ�Eþ γðωÞB: ð5Þ
The fluctuations of the local conductivity tensor are

assumed to be Gaussian, with a given correlator:

hδσðω; rÞδσðω; r0Þi ¼ Kωðr − r0Þ: ð6Þ
The effective medium is then characterized by the

effective conductivity σeff and the effective chiral magnetic

PRL 118, 107401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 MARCH 2017

107401-2



conductivity γeff, which relate the average current density to
the average electric and magnetic fields:

j̄ ¼ σeffĒþ γeffB̄: ð7Þ
Using the Maxwell equations, the electric field for a

given realization of δσðr;ωÞ can be shown to satisfy

∇ð∇EÞ −∇2E ¼ ω2

c2
ϵðωÞEþ γðωÞ∇ ×E

ϵ0c2

þ iω
ϵ0c2

δσðω; rÞE ð8Þ

with

ϵðωÞ ¼ ϵ∞ þ iσ̄ðωÞ
ϵ0ω

: ð9Þ

The corresponding (retarded) Green’s function obeys the
following equation:�

∇a∇b −∇2δab −
ω2

c2
ϵðωÞδab þ

γðωÞ
ϵ0c2

ϵabd∇d

−
iω
ϵ0c2

δσðω; rÞδab
�
Dbcðr; r0;ωÞ

¼ δacδðr − r0Þ: ð10Þ
For weak Gaussian disorder, the effective medium

theory reduces [54] to the standard self-consistent Born
approximation for the disorder-averaged Green’s function
D̄bcðr − r0;ωÞ, which depends on the difference r − r0 due
to the restored translational invariance.
Averaging over the “disorder realizations” is done accord-

ing to the standard rules for systems with quenched disorder
[55]. In particular, such averaging restores the translational
invariance, and themedium is characterized by a self-energy
in the expression for the average retarded Green’s function
of the electric fields. In the Fourier space, the equation for
the disorder-averaged Green’s function becomes�

q2δab − qaqb −
ω2

c2
ϵðωÞδab þ i

γðωÞ
ϵ0c2

ϵabdqd

− Σabðq;ωÞ
�
D̄bcðq;ωÞ ¼ δac: ð11Þ

The Feynman diagrams for the self-energy are shown
in Fig. 1. In real space it is given by

Σabðr − r0;ωÞ ¼ −
ω2

ϵ20c
4
Kωðr − r0ÞD̄abðr − r0;ωÞ; ð12Þ

which can be rewritten in the Fourier space as

Σabðq;ωÞ ¼ −
ω2

ϵ20c
4

Z
ðdq0ÞKωðq − q0ÞD̄abðq0;ωÞ; ð13Þ

where ðdqÞ≡ d3q=ð2π3Þ, and KωðqÞ is the usual Fourier
transform of KωðrÞ.

To capture the CME, one has to keep the linear in q
dependence of the self-energy. Because of the assumed
isotropy of the medium, the latter can be decomposed as

Σabðq;ωÞ ≈
ω2

c2
Σ0ðωÞδab −

i
ϵ0c2

Σ1ðωÞϵabcqc: ð14Þ

From Eq. (11) it is clear that Σ0;1 play the role of corrections
to the average values of ϵðωÞ and γðωÞ, respectively. From
Eq. (13), the expressions for Σ0;1 read

Σ0ðωÞδab ¼ −
1

ϵ20c
2

Z
ðdqÞKωðqÞD̄abðq;ωÞ;

Σ1ðωÞϵabc ¼
iω2

ϵ0c2

Z
ðdqÞ½∂qcKωðqÞ�D̄abðq;ωÞ: ð15Þ

The fact that the tensor structures on the left- and right-hand
sides of these equations match is guaranteed by the isotropy
of the medium.
Limiting ourselves to the linear order in γ, we finally

obtain

Σ0ðωÞ ¼
1

3ϵ20c
2

Z
ðdqÞKωðqÞ

�
2

q2ω − q2
þ 1

q2ω

�
;

Σ1ðωÞ ¼ γðωÞ ω2

3ϵ20c
4

Z
ðdqÞ q∂qKωðqÞ

ðq2 − q2wÞ2
; ð16Þ

where q2ω ¼ ðω2=c2Þ½ϵðωÞ þ Σ0ðωÞ�. The effective medium
parameters are given by

σeffðωÞ ¼ σ̄ðωÞ − iϵ0ωΣ0ðωÞ;
γeffðωÞ ¼ γðωÞ þ Σ1ðωÞ: ð17Þ

Equations (16) and (17) are one of the central results of
this Letter. They allow us to determine the effective
medium parameters for any particular model characterized
by a given correlator of optical conductivity fluctuations. It
is straightforward to show that these equations reproduce
the textbook effective medium theory results [56], if one
neglects the self-consistency.
In the equation for Σ0, the first term in round brackets

describes the contribution from the fluctuations with two

FIG. 1. The Feynman diagrams for the self-energy in the self-
consistent Born approximation.
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transverse polarizations, while the second one is the
contribution from the longitudinal electric field fluctua-
tions. The latter are dispersionless, since we did not include
quadratic spatial dispersion [Oðq2Þ] terms in the dielectric
tensor. In general, the contribution from the transverse
modes is small in the parameter ω2l2=c2 ∼ l2=λ20, where l
is the scale of macroscopic inhomogeneity, and λ0 is the
wavelength of the light with frequency ω in vacuum.
A model with short-ranged correlations.—To apply the

general expressions (16) to a nontrivial situation, we
consider a metal with a low carrier density, being treated
within the Drude model with a spatially dependent electron
density. In practice, one may talk about a doped semi-
conductor, taking into account spatial fluctuations of the
dopant density. We will show that the ensuing spatial
fluctuations of the optical conductivity result in plasmonic
features in the frequency dependence of γeffðωÞ.
Within the Drude model, the spatially dependent optical

conductivity has the following form:

σðr;ωÞ ¼ ϵ0ω
2
pτðrÞ

1 − iωτðrÞ : ð18Þ

We are interested in plasmonic features in γeffðωÞ; hence,
we specialize to frequencies close to the average plasma
edge, ω0. For ω0τ ≫ 1, the conductivity can be approxi-
mated according to

σðω; rÞ ≈ iϵ0ω2
pðrÞ
ω

þ ϵ0ω
2
pðrÞ

ω2τðrÞ : ð19Þ

In what follows we will neglect the real part of the
conductivity, since dissipation (ImΣ0 ≠ 0) will be gener-
ated by wave decay into plasmons. However, the (positive)
sign of the real part of the conductivity sets the sign of ImΣ0

(also positive), see below.
Writing ω2

pðrÞ ¼ ω2
0 þ δω2

pðrÞ, with
hδω2

pðrÞδω2
pðr0Þi ¼ Ω4 exp ½−κðr − r0Þ�; ð20Þ

we obtain

KωðqÞ ¼ −
ϵ20Ω4

ω2

8πκ

ðq2 þ κ2Þ2 : ð21Þ

Applying Eqs. (16), we obtain a self-consistent equation
for Σ0ðωÞ:

Σ0ðωÞ ¼ −
1

3

Ω4

ω4

1

1 − ω2
0

ω2 þ Σ0ðωÞ
: ð22Þ

For jω2 − ω2
0j < 2Ω2=

ffiffiffi
3

p
one has

ReΣ0ðωÞ ¼
ω2
0 − ω2

2ω2
;

ImΣ0 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3

Ω4

ω4
−
�
ω2
0

ω2
− 1

�
2

s
; ð23Þ

and for jω2 − ω2
0j > 2Ω2=

ffiffiffi
3

p

ReΣ0ðωÞ ¼
ω2
0 −ω2

2ω2
þ sgnðω2 −ω2

0Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ω2
0

ω2
− 1

�
2

−
4

3

Ω4

ω4

s
;

ImΣ0 ¼ 0: ð24Þ

Here, sgnðxÞ is the sign function.
Calculating Σ1, we get the following expression for

γeffðωÞ:

γeffðωÞ ¼ γðωÞ
�
1þ

�
Ω
cκ

�
4 1

ð1 − iqω=κÞ4
�
: ð25Þ

As before, q2ω ¼ ðω2=c2Þ½ϵðωÞ þ Σ0ðωÞ�.
The results of this calculation are plotted in Fig. 2. It is

observed that due to the disorder-induced scattering into
the dispersionless plasmons the local part of the effective
dielectric tensor of the medium acquires an imaginary part
sharply peaked around the plasma frequency. In turn, this
translates into sharp features in the circular dichroism and
polarization rotation signals, which are determined by
ImγeffðωÞ and ReγeffðωÞ, respectively.
The results depend strongly on the values of two

dimensionless parameters: ðΩ=ω0Þ2, and ðΩ=cκÞ2.
The former measures the inhomogeneous broadening of
the plasma edge; the appearance of the latter is tied to the
structure of the expression for Σ1, Eq. (16). The main
contribution to the corresponding integral comes from
wave vectors q ∼ κ, where κ is the inverse correlation
length of the optical conductivity fluctuations. The param-
eter ðΩ=cκÞ2 then represents the ratio of the typical
disorder-induced magnetic field fluctuation in an electro-
magnetic wave with q ∼ κ and electric field amplitude Eq,
which is δB ∼Ω2Eq=ωκc2, to the average magnetic field
of the wave, Bq ∼ κEq=ω. This parameter determines the
applicability region of the theory, which is ðΩ=cκÞ2 ≲ 1.
It is hard to theoretically estimate the aforementioned

parameters for a given material. Instead, they can be
determined from the widths and maximum height of
experimental peaks, analogous to those shown in Fig. 2.

FIG. 2. Relative change in the real (a), and imaginary (b) parts
of the effective chiral magnetic conductivity for Ω=ω0 ¼ 0.1 and
Ω=cκ ¼ 1. The latter value is at the applicability limit of the
present theory. For smaller Ω=cκ, the curves retain their shape,
but have to be scaled down appropriately, see the main text.
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For the particular model considered, the peak width scales
as Ω2=ω2

0, while the peak values of the circular dichroism
and polarization rotation signals scale roughly as ðΩ=cκÞ2
and ðΩ=cκÞ4, respectively.
In summary, we have developed the theory of disorder-

induced corrections to the chiral magnetic effect and natural
optical activity in samples with macroscopic inhomogene-
ities. The theory is applicable to situations in which the
electromagnetic fields vary smoothly on the inhomogeneity
scale. In particular, the theory pertains to the case of Weyl
metals with low electron density, in the terahertz frequency
range. In general, the disorder-induced corrections are not
large in absolute magnitude, but are the primary source of
the sharp frequency dependence of the chiral conductivity
around the plasma edge of the metal. This observation is
pertinent to any helical metals with natural optical activity,
not just Weyl ones.
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