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We apply moderate-high-energy inelastic neutron scattering (INS) measurements to investigate Yb>*
crystalline electric field (CEF) levels in the triangular spin-liquid candidate YbMgGaO,. Three CEF
excitations from the ground-state Kramers doublet are centered at the energies Ao = 39, 61, and 97 meV
in agreement with the effective spin-1/2 ¢ factors and experimental heat capacity, but reveal sizable
broadening. We argue that this broadening originates from the site mixing between Mg?>* and Ga** giving
rise to a distribution of Yb-O distances and orientations and, thus, of CEF parameters that account for the
peculiar energy profile of the CEF excitations. The CEF randomness gives rise to a distribution of the
effective spin-1/2 g factors and explains the unprecedented broadening of low-energy magnetic excitations
in the fully polarized ferromagnetic phase of YbMgGaO,, although a distribution of magnetic couplings
due to the Mg/Ga disorder may be important as well.
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Introduction.—Quantum spin liquid (QSL) is a novel
state of matter with zero entropy and without conventional
symmetry breaking even at zero temperature. Such states
were proposed to host “spinons,” exotic spin excitations
with fractional quantum numbers [1-3]. Although many
candidate QSL materials with two-dimensional or three-
dimensional interaction topologies on the triangular,
kagome, and pyrochlore lattices were reported [4—17],
they typically suffer from magnetic or nonmagnetic defects
[18-22], spatial anisotropy [4,7,15], antisymmetric
Dzyaloshinsky-Moriya anisotropy [23-25], and (or) inter-
layer magnetic couplings [25-27] that reduce or even
completely release magnetic frustration [25,27-30].

Many of the aforementioned shortcomings can be
remedied in a new triangular antiferromagnet YbMgGaO,
that was recently reported by our group [31-33]. No spin
freezing was detected down to at least 0.048 K, which is
about 3% of the nearest-neighbor interaction Jy ~ 1.5 K
[33]. Residual spin entropy is nearly zero at 0.06 K,
excluding any magnetic transitions at lower temperatures
[31]. Below 0.4 K, thermodynamic properties evidence the
putative QSL regime with temperature-independent mag-
netic susceptibility y = const [33] and power-law behavior
of the magnetic heat capacity, C,, ~ T%/ [31], the obser-
vations that are consistent with theoretical predictions
for the U(1) QSL ground state (GS) on the triangular
lattice [34-36].
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Very recently, two inelastic neutron scattering (INS)
studies of YbMgGaO, [37,38] reported continuous
excitations at transfer energies of 0.1-2.5 meV extending
well above the energy scale of the magnetic coupling
Jo ~0.13 meV. These spectral features were identified as
fractionalized excitations (spinons) from the QSL GS [37].
Surprisingly, though, magnetic excitations remain very
broad in both energy and wave vector (Q) even in the
almost fully polarized state at 7.8 T, where only narrow
spin-wave excitations of an ordered ferromagnet are
expected [38]. This persistent broadening of magnetic
excitations may be related to a very inconspicuous intrinsic
structural disorder that we uncover and quantify by INS
measurements at high energies, where crystalline electric
field (CEF) excitations of Yb** ions can be probed.

In this Letter, we report a comprehensive investigation of
the CEF excitations in YbMgGaQ,. They are observed at
the energies of Aw = 39, 61, and 97 meV and show not
only a pronounced broadening, but also a very peculiar
energy profile with a shoulder around 87 meV on the side of
the 97 meV excitation. These peculiarities are rationalized
by considering the frozen Mg/Ga disorder that affects the
local environment of Yb** and, thus, the CEF parameters.
Their randomness gives rise to a distribution of electronic g
factors and explains the broadening of low-energy mag-
netic excitations, thus rendering structural randomness an
important ingredient of the QSL physics in YbMgGaO,.
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FIG. 1. (a) Crystal structure of YbMgGaO,. The random
distribution of Mg?* and Ga** causes local distortions of the
YbOg environments due to uneven charge distribution around the
Yb3* site [41]. (b) Four Kramers doublet energy levels and three
CEF excitations obtained from the CEF fit. The dashed lines
illustrate the broadening of the CEF excitations due to the
inherent structural disorder.

Experimental technique.—Moderate-high-energy INS
data and low-energy INS data were collected, respectively,
on the MERLIN [39] and LET [40] spectrometers at the
ISIS pulsed neutron facility, Rutherford Appleton
Laboratory, U.K. [41]. Several incident energies E; were
used at MERLIN. In the following, we focus on the data
obtained with E; = 153.5 meV that provides the best
trade-off between the resolution and energy coverage
[53]. Our YbMgGaO, (my, = 14.03 g) and LuMgGaO,
(mp, = 6.36 g) powder samples for the MERLIN experi-
ment were prepared using solid-state reactions [31]. Single
crystals of YbMgGaOj, for the LET experiment were grown
by the floating zone technique [32].

CEF excitations.—According to the Hund’s rules, the
free Yb’* (4f'%) ion has the spin angular momentum
s = 1/2 and orbital angular momentum L = 3 resulting in
the eightfold-degenerate ground state with the total angular
momentum J = 7/2 and Landé g factor g; = 8/7 for the
GS multiplet. In the idealized YbMgGaO, structure, Yb>*+
has trigonal local symmetry with the point group D5, [see
Fig. 1(a)] that splits this multiplet into four Kramers
doublets [41] [see Fig. 1(b)].

Raw INS spectra for both YbMgGaO, and its non-
magnetic analog LuMgGaO, are shown in panels (a)
and (b) of Fig. 2, respectively. Their comparison reveals
three features that are identified as CEF excitations of Yb**
based on the following observations. (i) These excitations
are absent in the nonmagnetic reference compound
LuMgGaO, [Fig. 2 (b)]. (ii)) The lowest-lying excitation
at around ~39.4 meV [see Fig. 2(c)] is consistent with
the energy separation A ~36.5(1) meV between the
ground-state Kramers doublet and the first excited state,
as found in our previous heat capacity measurements [32].
(iii) No systematic anharmonic effect is observed, thus
excluding the phonon origin of the excitations [41,54].
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FIG. 2. MERLIN INS spectra for (a) YbMgGaO, and
(b) LuMgGaO, measured with the incident neutron energy of
153.5 meV at 5 K. (c) Energy dependence of the INS intensity at
5 K for both YbMgGaO, and LuMgGaO, measured with
different incident neutron energies. The data have been integrated
over the wave vector space 4 <|Q| <6 A™!. Three CEF ex-
citations of Yb3* are highlighted by colored dashed lines. The
INS intensities of LuMgGaO, are multiplied by myy,/my,,.
(d) Zoom-in view of the CEF excitation around 97 meV.

(iv) Q-independent excitation energies [see Fig. 2(a)]
suggest their single-ion nature. (v) The intensities decrease
with Q following the square of the magnetic form factor of
the Yb** ion [see Fig. 3(b)]. (vi) The lowest excitation at
around 39 meV is far above J; = 0.13 meV and, therefore,
unrelated to the spin-spin correlations in YbMgGaO,. All
these facts indicate that three spectral features are single-
ion CEF excitations. For a Yb** ion with J = 7/2 in the
D3, symmetry, we indeed expect four CEF doublets and,
thus, three CEF excitations from the ground-state doublet.
A closer inspection of these CEF excitations reveals two
unusual features, though. First, all excitations are much
broader than the instrumental resolution. For example, at
E; =153.5 meV the total FWHMs (full width at half
maximum obtained from the convoluted Lorentzian and
Gaussian peak profiles) are 10.1(4) meV (Aw; ~ 39 meV),
109(4) meV (hw, ~61 meV), and 12.2(7) meV
(hws ~ 97 meV), much larger than the instrumental reso-
lutions (Gaussian component) of 6.7, 5.6, and 4.3 meV,
respectively. Through convolution calculations, we deter-
mine the additional broadening (Lorentzian component) of
5.5,7.9,and 10.7 meV, respectively. Given the high quality of
our sample [41] and the low temperature of the measurement
(T =5 K), we conclude that this broadening is intrinsic.
Another peculiar feature is the shape of the highest CEF
excitation that shows the main peak around 97 meV and
a shoulder at ~87 meV [see Fig. 2(d)]. The Q dependence
of the intensity at ~87 meV follows the square of the
magnetic form factor of the Yb3* ion [41], thus proving the
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FIG. 3. (a) Peak fit to the INS spectra of YbMgGaO, (No. 1) at

5 K. Three peak centers are obtained (colored dashed lines).
(b) Wave vector (|Q|) dependence of the INS intensities around
the three CEF excitations. Lattice contributions are subtracted
by the nonmagnetic counterpart [(myy/my,)I;,] measured on
LuMgGaO,. Colored curves show the fit with a small constant
background [i.e., I;|F(Q)> + b;] to the integrated INS data,
where I, > |b,|. (c) Temperature dependence of the magnetic
heat capacity measured on YbMgGaO, single crystals. Lattice
contribution is subtracted using the heat capacity of LuMgGaO,
[32]. The blue solid, red dashed, and green dotted curves show
the calculated heat capacities using three series of the fitted CEF
parameters (No. 1, No. 2, and No. 3) [41], respectively. (d) INS
spectra calculated by considering different nearest-neighbor
oxygen environments (distorted YbOg octahedra) [41] convo-
luted with the corresponding instrumental resolutions.

CEF origin of this spectral feature. It contributes about 40%
of the overall intensity of the highest-energy excitation
and is clearly intrinsic. Further, there are no phonon modes
observed between ~70 and 120 meV in LuMgGaO, [see
Fig. 2(b)] and, hence, the ~87 meV shoulder could not be
due to CEF-phonon coupling [55].

Combined CEF fit.—To determine the CEF parameters,
we fit energy dependence of the experimental intensity in
three fashions [see Fig. 3(a) and Ref. [41]]. Fit No. 1 is
performed against the whole data set [see Fig. 3(a)]. For fit
No. 2 we excluded the region between 73 and 90 meV,
where the additional shoulder is observed, while fit No. 3 is
performed against the whole data set with a four-peaks fit
and uses the additional shoulder energy (~87 meV) as hws.
All fits share the same measured relative INS intensities,
I,/I, and I3/1,; [see Fig. 3(b)], and the same measured
effective spin-1/2 g factors [32]. Through combined fits to
these seven observables—hw,, hw,, hws, I,/1, 15/1;, g, ,
and g—we obtain all six CEF parameters Bj' [41] by
minimizing the following deviation function,

1 7 X?bS—XIC-al 2

where X and o9 are the experimental value and its
standard deviation, respectively, whereas X is the calcu-
lated value. Qualitatively similar CEF parameters and wave
functions are found from fits No. 1, No. 2, and No. 3, as
shown in Ref. [41], respectively. The magnetic part of the
experimental heat capacity (C,,) is very well reproduced
[see Fig. 3(c)]:

cor 1 PHITLo2ep-Ep
m T kT I )?

Inherent structural disorder and CEF randomness.—
The peculiar shape of the CEF excitations is rooted in
subtle details of the YbMgGaO, crystal structure. Our
single-crystal x-ray diffraction study excludes any global
symmetry reduction or a site mixing between Yb and
Mg/Ga [41]. On the other hand, Mg and Ga share one
crystallographic site, thus forming different local configu-
rations around each Yb3* ion. The most obvious effect of
this Mg/Ga disorder is the variation of the electrostatic
potential imposed on Yb**. We assess it by calculating
CEF parameters using the point-charge model [41] and find
that as long as Yb occupies its ideal position at (0,0,0), the
random distribution of Mg and Ga gives rise to only a weak
broadening of the CEF excitations, A(fw;) = 0.27 meV,
A(hw,) = 0.26 meV, and A(Aw;) = 0.39 meV, and does
not account for our experimental observations. Moreover,
all three CEF excitations remain symmetric.

A further effect of the Mg/Ga disorder is local charge
misbalance that may push Yb out of its ideal position,
as reflected by the enhanced values of the Yb atomic
displacement parameter, with the thermal ellipsoid elon-
gated along the ¢ direction [41,56]. We probed this effect
quantitatively by constructing several representative Mg/Ga
configurations and optimizing their geometry using den-
sity-functional calculations [41]. We indeed observed that
exact positions of both Yb and its neighboring oxygens are
affected by the local distribution of Mg>* and Ga®*. The
resulting distortions of the YbOg octahedra give rise to a
pronounced distribution of the CEF parameters and render
the highest-lying CEF excitation asymmetric [41]. Both
the ~87 meV shoulder and the overall broadening of the
CEF excitations can be well reproduced [see Fig. 3(d) and
Ref. [41]]. Consequently, the effective spin-1/2 g factors
show a maximum distribution as follows: Ag, ~ 0.3 and
Agy~ 1.2 [41]. This distribution of the g values has
immediate ramifications for low-energy excitations, as
we show below. Eventually, intersite magnetic couplings
should be random too [57], although perhaps in a more
complicated manner.

Prior to discussing the low-energy excitations, let us note
that the broadening of CEF excitations is not uncommon
for rare-earth compounds [58—60]. This effect is usually
ascribed to antisite defects, as in the “stuffed”” quantum
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spin ice, Yb,Ti,_,Yb,O7_,» with x~0.01-0.02
[57,61,62]. On the other hand, site mixing beyond the
rare-earth site, as in Tb,Sn,_,Ti, 07, is believed to merge
the CEF excitations into a broad continuum [63].
Interestingly, YbMgGaO, with its complete Mg/Ga dis-
order and without any detectable Yb antisite defects retains
well-defined CEF excitations, albeit with a peculiar energy
profile that can be reproduced, perhaps for the first time,
by considering local atomic relaxation depending on the
distribution of Mg and Ga around Yb**.

Spin-wave continuum.—Under the field of 8.5 T applied
along the ¢ axis, the spin system is fully polarized
according to the static magnetization measurement at
1.9 K [41]. Therefore, at 8.5 T and 0.1 K the fully polarized
(ferromagnetic) state should give rise to narrow spin-wave
excitations having the width of about 0.16 meV according
to the instrumental resolution of LET. In contrast, the
measured INS signals are still broadly distributed in the
energy space with a width of more than 0.5 meV [see
Fig. 4 (a)]. This width is obviously larger than the
instrumental resolution [40] and than the width of spin-
wave excitations in single crystals of a similar Yb**
material, Yb,Ti,O; [17]. Similarly broad excitations were
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FIG. 4. LET INS spectra of a YbMgGaO, single crystal sample
measured at 0.1 K under a field of 8.5 T applied along the ¢ axis,
the incident neutron energy is 5.5 meV. (a) Energy dependence of
the excitations along the wave vector direction [H, 0, 0]. (c),(e),
and (g) Wave vector dependence of the excitations at the transfer
energies 1.2, 1.7, and 2.1 meV, respectively. (b),(d),(f), and
(h) Calculated spin-wave excitations using the previously re-
ported effective spin-1/2 g factor and coupling constants [32] by
considering a convolution of the broadening of g; (Agy = 1.2)
and the instrumental Gaussian broadening (o = 0.16 meV).
The calculated spin-wave dispersion without any broadening is
shown in (a) (pink line). The black dashed lines represent
Brillouin zone boundaries.

observed in the recent INS measurement performed in the
applied field of 7.8 Tat 0.06 K [38]. Our magnetization data
[41] confirm that at 8.5 T the Yb>* spins are fully polarized
along the ¢ axis. Nevertheless, the excitations remain very
broad. Thus, the natural explanation to this observed spin-
wave continuum is the aforementioned randomness of the
effective spin-1/2 g factors and (or) couplings, since linear
spin-wave theory should be applicable to YbMgGaO, at
8.5 Tand 0.1 K.

We model the spin-wave excitations in the ab plane
under the high applied field along the ¢ axis using the
expression [64]

d2
dg;’w « [F(|Q])]?
2 Qxx 26y
§ <QyS (Q,E)|(;|2QXSU(Q,E) _’_SZZ(Q,E)>, (3)

where F(|Q]) is the magnetic form factor of Yb’* and
S§*(Q,E) (a=ux, y, or z) is the dynamic spin structure
factor calculated by the Spinw-Matlab code based on the linear
spin-wave theory [65-67] and coupling parameters
reported earlier [32]. By considering the maximum broad-
ening of gy, Agy = 1.2, and the instrumental Gaussian
broadening, ¢ = 0.16 meV, we are able to reproduce the
broadening of about 0.7 meV at the zone center. However,
the signal is even broader at the zone boundary. While the
on-site randomness is clearly very important for the low-
energy physics, a distribution of magnetic couplings is
relevant too and requires further investigation.

Conclusions.—The CEF excitations of Yb’' in the
triangular QSL YbMgGaO, have been studied by moder-
ate-high-energy INS measurements. Large broadening and
peculiar energy profile of the CEF excitations is observed
and ascribed to the structural randomness, namely, the
random distribution of Mg and Ga that affects local
coordination of the Yb*™ ions. We propose that this
inherent structural disorder results in the distribution of
the effective spin-1/2 ¢ factors, which, in turn, is respon-
sible for the persistent broadening of low-energy magnetic
excitations in the fully polarized ferromagnetic state,
although the distribution of magnetic couplings seems to
be relevant too. Our results put forward structural random-
ness as an important ingredient in the spin-liquid physics,
an observation that goes hand in hand with the recent report
on the suppression of thermal conductivity at low temper-
atures [68]. In 4 f-based materials, the randomness of CEF
levels can be easily introduced without generating strong
structural disorder, thus opening interesting prospects for
the design of new spin-liquid materials [69].
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Note added.—After the submission of our Letter, the results
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