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Spin orbitronics and Dirac quasiparticles are two fields of condensed matter physics initiated
independently about a decade ago. Here we predict that Dirac quasiparticles can be controlled by the
spin-orbit torque reorientation of the Néel vector in an antiferromagnet. Using CuMnAs as an example,
we formulate symmetry criteria allowing for the coexistence of topological Dirac quasiparticles and Néel
spin-orbit torques. We identify the nonsymmorphic crystal symmetry protection of Dirac band crossings
whose on and off switching is mediated by the Néel vector reorientation. We predict that this concept
verified by minimal model and density functional calculations in the CuMnAs semimetal antiferromagnet
can lead to a topological metal-insulator transition driven by the Néel vector and to the topological
anisotropic magnetoresistance.
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In 2004, the spin Hall effect was observed in GaAs [1–3]
and one-atom-thick flakes of graphene were isolated [4,5].
The former discovery marked the dawn of the field of spin
orbitronics, in which the relativistic conversion between
linear momentum and spin angular momentum of con-
ducting electrons has provided new physical concepts for
spintronics devices. These include the spin-orbit torque
(SOT), which has opened the path to reliable and fast
information writing in a ferromagnetic random access
memory [6,7] and also to efficient means of the electrical
switching of an antiferromagnet (AF) by the Néel SOT
[8,9]. Independently, the discovery of graphene initiated
intense research of Dirac fermion quasiparticles, in par-
ticular, as a new platform for exploring topological phases
[10] in condensed matter. The field includes topological
insulators, semimetals, or superconductors, which host a
family of quasiparticles mimicking different flavors of
fermions from relativistic particle physics [11–13]. More
recently, novel phenomena have been discovered at the
intersection of spin orbitronics, Dirac quasiparticles, and
topological phases, such as the quantum spin Hall effect
and the quantum anomalous Hall effect in nonmagnetic and
magnetic topological insulators [14–19]. Dirac quasipar-
ticles exhibiting a strong spin-momentum locking are also
considered for enhancing the efficiency of the SOT control
of magnetic moments in ferromagnetic topological insu-
lator heterostructures [20].
In this Letter, we close the loop of synergies between the

fields of spin orbitronics and topological Dirac quasipar-
ticles by proposing a scheme for the electric control of
Dirac band crossings via the Néel SOT in AFs. Our work
addresses the outstanding problem of finding efficient
means for controlling Dirac quasiparticles by external

fields which may provide the desired tools for the exper-
imental research and future practical applications in micro-
electronics [21]. In a specific example of the semimetal
CuMnAs AF [9,22–24], we demonstrate that the Néel
vector orientation is a suitable degree of freedom that can
mediate on and off switching of the symmetry protection of
Dirac band crossings. Based on this, we also predict the
topological metal-insulator transition (MIT) and the topo-
logical anisotropic magnetoresistance (AMR) in Dirac
semimetal AFs. Our results suggest a generic strategy
for designing large topological magnetotransport effects
for spintronics.
Dirac quasiparticles and the Néel SOT can coexist

because of the serendipitous overlap of the key symmetry
requirements. We illustrate this in examples shown in
Figs. 1(a) and 1(b) of the graphene lattice representing
the Dirac systems [25] and the tetragonal CuMnAs crystal
where the Néel SOT has been experimentally verified [9].
(i) The two-Mn-site primitive cell of CuMnAs favors band
crossings in analogy with the two-C-site graphene lattice.
(ii) In the paramagnetic phase, CuMnAs has time reversal
(T ) and space inversion (P) symmetries. It guarantees that
each band is double degenerate forming a Kramers pair, in
analogy to graphene. In the AF phase, this degeneracy is
not lifted because the combined PT symmetry is pre-
served, although the T symmetry and the P symmetry are
each broken [24,26–28]. This highlights antiferromagnet-
ism as the favorable type of magnetic order for controlling
Dirac quasiparticles. (iii) Finally, the combined PT sym-
metry also allows for the efficient SOT reorientation of the
Néel vector [8,29]. Because the A and B Mn sites in the
CuMnAs primitive cell are noncentrosymmetric inversion
partners, a nonequilibrium spin-polarization δsA;B with

PRL 118, 106402 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 MARCH 2017

0031-9007=17=118(10)=106402(5) 106402-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.118.106402
http://dx.doi.org/10.1103/PhysRevLett.118.106402
http://dx.doi.org/10.1103/PhysRevLett.118.106402
http://dx.doi.org/10.1103/PhysRevLett.118.106402


opposite sign on the two sites is generated by an electrical
current J [see Fig. 1(b)] [8]. This applies to both the
paramagnetic and the AF phase above and below the Néel
temperature of CuMnAs. Moreover, in the AF phase, the
inversion partner A and B sites are occupied by oppositely
oriented Mn magnetic moments (hence, the combined PT
symmetry). The current-induced nonequilibrium spin
polarization and the equilibrium AF moments are, there-
fore, both staggered and commensurate. In combination
with the exchange interaction that couples them, the
resulting current-induced Néel SOT can efficiently reorient
the Néel vector [8,9].
An additional crystal symmetry is now needed to mediate

the dependence of Dirac quasiparticles on the Néel vector
orientation. In graphene, there is no symmetry that protects
the fourfold degeneracy of Dirac crossings of two Kramers
pair bands in the presence of spin-orbit coupling (SOC) [14].
Inspired by recent predictions of the symmetry protection
of band crossings in Dirac semimetals [30–32], we identify
nonsymmorphic symmetries that can be turned on and off

by reorienting the Néel vector in CuMnAs and by this can
close and open a gap at the Dirac crossing. Recall that
nonsymmorphic space groups contain point group opera-
tions coupled with nonprimitive lattice translations.
We illustrate the concept first on a generic minimal

model based on the tetragonal CuMnAs AF, considering
only the Mn atoms (with one orbital per atom) that form a
stack of the crinkled quasi-2D square lattices shown in
Figs. 1(b) and 1(c). We first neglect the coupling between
these quasi-2D planes; their distance is larger than the first
and second nearest-neighbor distances within the quasi-2D
plane. The corresponding model Hamiltonian in the crystal
momentum space,

Hk ¼ −2tτx cos
kx
2
cos

ky
2
− t0ðcos kx þ cos kyÞ

þ λτzðσy sin kx − σx sin kyÞ þ τzJnσ · n; ð1Þ

consists of the first nearest-neighbor hopping t (intersu-
blattice A-B hopping), the second nearest-neighbor hop-
ping t0 (intrasublattice A-A hopping), the second-neighbor
SOC of strength λ [14], and the AF exchange coupling
of strength Jn. The wave vector kxðyÞ is in units of the
inverse lattice constant, n is the Néel vector, and τ and σ
are Pauli matrices describing the crystal sublattice A, B
and spin degrees of freedom, respectively. We diagonalize
H analytically,

Ek� ¼ −t0ðcoskx þ coskyÞ �
�
4t2cos2

kx
2
cos2

ky
2

þ ðJnnx − λ sinkyÞ2 þ ðJnny þ λ sinkxÞ2 þ J2nn2z

�
1=2

;

ð2Þ

and plot in Fig. 1(e) the resulting bands measured from
the Fermi level for λ ¼ 0.8t, Jn ¼ 0.6t, and t0 ¼ 0.08t.
For the Néel vector n∥½100�, we found two DPs D1 and D2

in the first BZ along the MX axis at wave vectors D1 ¼
½π; arcsinðJn=λÞ� and D2 ¼ ½π; π − arcsinðJn=λÞ�, as shown
in Figs. 1(d) and 1(f).
For the minimal quasi-2D model of the CuMnAs AF,

we can now show explicitly that the DPs are protected
by a nonsymmorphic, glide mirror plane symmetry [32],
Gx ¼ fMxj 12 00g. It combines the mirror symmetry Mx

along the (100) plane with the half-primitive cell translation
along the [100] axis [see Fig. 1(c)] and has eigenvalues
g� ¼ �i. The fourfold degenerate DP originates from a
crossing of two Kramers pairs where the two bands in each
pair are degenerate due to the PT symmetry. Hybridization
between the pairs is prohibited; i.e., the crossing is
protected by Gx when the following conditions are met.
(i) The crossing occurs at the BZ submanifold invariant
under Gx. This is fulfilled in the kx ¼ 0, �π planes. (ii) The
two bands forming a given Kramers pair with the corre-
sponding wave functions ψk and PT ψk can be assigned

FIG. 1. (a) Graphene two-A, B-sublattice crystal. (b) Minimal
two-A, B-sublattice AF with the nonsymmorphic symmetry
extracted from CuMnAs. The two magnetic sublattices are
connected by the PT symmetry center marked by the black
ball, and they are noncentrosymmetric. This allows for the
nonzero staggered nonequilibrium spin polarizations δsA;B in-
duced by the current J, which facilitates the manipulation of the
Néel vector. (c) Top view of our quasi-2D-AF model highlighting
the nonsymmorphic glide mirror plane Gx (see text). (d) 2D
Brillouin zone (BZ) projection with the Dirac point (DP)
positions for n∥½100� along the MX axis (blue), while for
n∥½010� along the M0Y axis (red). (e) Band dispersion of our
minimal AF model illustrating the control of the DPs and
topological indexes of the DP D1 in the inset (for the sake of
clarity, the degenerate bands are slightly shifted). (f) 3D model
BZ with the Dirac nodal lines [the colors of the planes protected
for a given Néel vector orientation correspond to (d),(e)].
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the same eigenvalue of Gx. From the commutation relation
of Gx and PT , we obtain that this condition is fulfilled only
at the BZ submanifold kx ¼ �π [cf. Figs. 1(d) and 1(e)].
(iii) One Kramers pair corresponds to one eigenvalue and
the other Kramers pair to the opposite eigenvalue of Gx.
This can be verified by employing the k · p perturbation
theory. Around, e.g., the D1 point in the kx ¼ π plane,
we obtain ED1þky;� ¼ �ℏvF;yky with the two Kramers pairs
fulfilling Gxψk� ¼ GxPT ψk� ¼∓ iψk�. This is high-
lighted in the inset of Fig. 1(e).
Because of the combinedPT symmetry, we can define the

topological index of our DPs analogously to the paramag-
netic Dirac semimetals [33]. The topological index NðkyÞ
at the crystal momentum ky invariant under Gx is given by
NðkyÞ¼ ½NC

þiðkyÞ−NV
þiðkyÞ�− ½NC

−iðkyÞ−NV
−iðkyÞ�. Here,

NCðVÞ
�i ðkyÞ is the number of conduction (valence) bands at

ky with the eigenvalue g� ¼ �i. An integer value and a
discontinuity of the topological index when crossing the
DP in our model is highlighted in the inset of Fig. 1(e).
The corresponding topological charge at, e.g., the DP D1

obtained by approaching D1 from left and right [33]
is Q≡ ½NðD1 þ δÞ − NðD1 − δÞ�=8 ¼ −1.
Following the symmetry analysis of Néel SOTs in

Refs. [8,29], we obtain for our model AF that the low-
est-order (n-independent) component of δsA;B is staggered;
i.e., it can generate an efficient fieldlike SOT. The field
allows for the rotation of n in the (001) plane in the
direction perpendicular to the applied in-plane current.
In Figs. 1(d) and 1(e), we show that for n∥½010� the DPs
move to the M0Y axis. They are now protected by the
Gy ¼ fMyj0 1

2
0g symmetry, as expected for the square

quasi-2D lattice.
At intermediate in-plane angles, no DP protecting sym-

metry remains, and the entire spectrum is gapped [see the
n∥½110� bands in Fig. 1(e)].As highlighted on the full spectra
of the minimal quasi-2D model in Figs. 2(a) and 2(b), this
leads to the topological MIT driven by the Néel vector
reorientation. The band gap at the DP is a continuous
function of the in-plane Néel vector angle ΔðD1Þ∼
Jn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosðϕÞp

, where ϕ is measured from the [100] axis.
The transport counterpart of theMIT is the topologicalAMR,
which we define as AMR≡ ½σðϕÞ − σmin�=σmax. Here, σðϕÞ

is the ϕ-dependent conductivity with current along the [100]
axis and σminðmaxÞ referring to the conductivity minimum
(maximum). The topological AMR in our Dirac semimetal
AF can be extremely large due to the MIT, as illustrated
schematically in Fig. 2(c). High AMR values correspond to
ϕ ¼ 0ðπ=2Þ with the closed gap of the DPs at MX (M0Y).
The mechanism of our topological AMR is based on Fermi
surface topology changes induced by staggered order rota-
tions. It is, therefore, fundamentally distinct from the conven-
tional, scattering-related AMR in a normal magnetic metal
[34], as we show in Fig. 2(c).
We conclude the discussion of the minimal model AF by

taking into account the coupling between the quasi-2D
planes. The coupling leads to the following renormalization

of the model Hamiltonian (1): 2tτx→
3Dð2t þ tz cos kzÞτxþ

tz sin kzτy; t0ðcos kx þ cos kyÞ→3Dt0ðcos kx þ cos kyÞþ
t0z cos kz, and λ→

3D
λ − λz cos kz. As a result, the Gx (Gy)

protected DPs in 2D transform into protected nodal lines

in 3D. For example, D1→
3D½π; arcsinðJn=λ − λz cos kzÞ; kz�

gives an open nodal line for λz < λ=2, as shown in
Fig. 1(f) for λz ¼ 0.2t. Note that in our Dirac AF, the
nodal lines are dispersive in contrast to the paramagnetic
Jn ¼ 0 model [33].
Wenowverify all observationsmade in theminimalmodel

by performing full-potential relativistic ab initio calculations
as implemented in the FLEUR and ELK packages [35]. The
exchange correlation potential is parametrized by the
Perdew-Burke-Ernzerhof generalized gradient approxima-
tion (GGA) [36,37]. The full crystal of tetragonal CuMnAs
including also the Cu and As atoms is shown in
Fig. 3(a) [38,39]. The results without SOC are summarized
in Figs. 3(b) and 3(c). They show the semimetallic character
with the dip in the density of states near the Fermi level and
numerous band crossings.Note that their position is sensitive
to the computational details; as an illustration, we plot in
Fig. 3(c) shifted bands obtained in the GGAþ U approxi-
mation with the correlation potentialU ¼ 3 eV.When SOC
is included in the ab initio calculations and n∥½100�,
protected nodal lines are obtained in the kx ¼ �π planes,
as illustrated in Fig. 3(d). The nodal lines have the open
geometry [cf. Fig. 1(f)]. The protection is due to the Gx
symmetry, also in agreement with the minimal model.
Instead of assigning the Gx eigenvalues in the complex
ab initio band structure, we verify this by excluding all other
relevant symmetries as the origin of the protection. For
n∥½100�, the space group P4=nmm of the tetragonal
CuMnAs lattice reduces to eight symmetry elements: iden-
tity, nonsymmorphic glide planes Gx and Gz ¼ fMzj 12 12 0g,
screw axis Sy ¼ fC2yj0 1

2
0g, and four PT conjugated

symmetries. By rotating the Néel vector to n∥½110� and
n∥½101�, Gz and Sy remain symmetries of the AF crystal,
respectively. In both cases, however, the nodal lines become
gapped, as illustrated in Fig. 3(e), excluding the protection

FIG. 2. Topological MIT in our minimal model driven by Néel
vector reorientation from (a) [100] to (b) [110] by the Néel SOT.
(c) Schematics of the corresponding angular dependence of the
topological AMR contrasted to the normal AMR.
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by these symmetries. Note that the Gx protection makes our
tetragonal CuMnAs AF distinct from the earlier identified
nonsymmorphic protection in paramagnetic ZrSiS [40].
The fieldlike Néel SOT in the full tetragonal crystal of

CuMnAs has the same symmetry as in the minimal model
and, therefore, allows for the current-induced rotation of the
Néel vector [9,29]. This opens the prospect of electric
control of Dirac crossings in an experimentally relevant AF
material. However, the tetragonal CuMnAs is not optimal
for observing the corresponding topological MIT due to
other non-Dirac bands present around the Fermi level [see
Fig. 3(c)]. These can be removed, e.g., by lowering the
lattice symmetry from tetragonal to orthorhombic [22,24],
as we now discuss in the remaining paragraphs.
The nonsymmorphic Pnma primitive cell of the ortho-

rhombic CuMnAs [41] is shown in Fig. 4(a). It has four Mn
sites consisting of the two inversion-partner pairs A-B and
A0-B0. From the symmetry analysis of the current-induced
spin polarizations [29] generated locally at these four sites,
we obtain that they contain components which are com-
mensurate with the AF order: A and A0 sites with one sign
of the current-induced spin polarizations belong to one AF
spin sublattice, and B and B0 sites with the opposite sign of
the current-induced spin polarizations belong to the oppo-
site AF spin sublattice. This makes the Néel SOT efficient
for reorienting AF moments in orthorhombic CuMnAs.
GGA electronic structure calculations without SOC

are shown in Figs. 4(b) and 4(c). Consistent with earlier

reports [22,24], the density of states vanishes at the Fermi
level, and we now discuss the properties of the three Fermi
level DPs seen in Figs. 4(b) and 4(c). Without SOC, they
are part of an ungapped nodal line in the ky ¼ 0 plane [24].
In the presence of SOC and for n∥½001�, the DPs along the
ΓX and ZX axes become gapped. The gap opening applies
to the entire nodal line, except for the DP along the XU axis
(and also X0U), as shown in Figs. 4(d) and 4(f)–4(h). Using
the same method as in the ab initio calculations for the
tetragonal CuMnAs, we identified that the XU DP pro-
tection is due to the screw-axis symmetry Sz ¼ fC2zj 12 0 1

2
g

[24]. The corresponding state at n∥½001� is then a topo-
logical AF Dirac semimetal with the positive topological
charge of the XU DP. For n∥½101�, all DPs (the entire nodal
line) are gapped, and the system becomes an AF semi-
conductor, as seen in Figs. 4(e)–4(h). Finally, for n∥½100�,
the spin-orbit gap is nearly but not fully closed at the ΓX
DP, as shown in Fig. 4(f). This trivial AF Dirac semimetal
phase is reminiscent of graphene. Our calculations predict a
relatively weak magnetic anisotropy with the equilibrium
easy axis along the [100] direction. Note that the easy-axis
determination with E½001� − E½100� ∼ 0.3 meV per unit cell
is at the resolution limit of our computational method.
Since the DPs can appear at the Fermi level [see, also,
the comparison of GGA and GGAþU calculations in
Fig. 4(b)], orthorhombic CuMnAs represents a realistic
material candidate for observing the topological MIT and
AMR driven by the Néel vector reorientation.

FIG. 3. (a) Crystallographic and magnetic structure of the
tetragonal CuMnAs. Atom-resolved (b) density of states with
semimetallic pseudogap and (c) band structure without SOC
within GGA. GGAþU shows DPs position shifts. Colors
correspond to the atomic colors in (a). Electric control by the
Néel SOT of the 3D band dispersion around the nodal line along
the kx ¼ π BZ submanifold calculated by GGAþ SOC, which is
(d) protected for nj½100� by the glide mirror plane and (e) gapped
for nj½110�. a ¼ b ≠ c are the lattice constants. (f) Cut along the
XMY line through the nodal lines at different energies.

FIG. 4. (a) Crystallographic and magnetic structure of the
orthorhombic CuMnAs with Néel SOT spin-polarization δs for
the current J∥½100�. Atom-resolved (b) point-semimetal density
of states and (c) band structure without SOC within GGA.
GGAþ U shows DPs position shifts. (d),(e) Topological MIT.
Manipulation of the Dirac fermions along the (f) ΓX, (g) XU, and
(h) ZX axis (units d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2

p
with a ≠ c being the lattice

constants) by the Néel SOT from GGAþ SOC calculations
reveals topological (n∥½001�), “trivial” Dirac semimetal
(n∥½100�), and semiconductor (n∥½101�).
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