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Most substitutional solutes in solids diffuse via vacancies. However, widely used analytic models for
diffusivity make uncontrolled approximations in the relations between atomic jump rates that reduce
accuracy. Symmetry analysis of the hexagonal close packed crystal identifies more distinct vacancy
transitions than prior models, and a Green function approach computes diffusivity exactly for solutes in
magnesium. We find large differences for the solute drag of Al, Zn, and rare earth solutes, and improved
diffusion activation energies—highlighting the need for exact analytic transport models.
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Diffusion in crystals is a fundamental defect-driven
process that controls a variety of different phenomena in
materials including ion transport, irradiation-induced deg-
radation of materials, recrystallization, and the formation
and growth of precipitates [1]. Developing new alloys
requires a precise knowledge of solute transport under
various processing conditions. For example, magnesium
alloy design focuses on precipitate formation and evolution
[2–5], and randomizing the grain texture for improved
strain hardening [6–8]. Magnesium alloys may substitute
for aluminum and steel in aerospace and automotive
industries with their higher specific strengths [9–11].
The growing interest in magnesium has driven experimen-
tal [12–19] and computational [20–23] studies of transport
coefficients of the common Al and Zn solutes that improve
strength and rare earth elements that improve ductility.
Transport coefficients are fundamental inputs for models at
the length and time scales of microstructure evolution.
However, computational modeling of transport coefficients
for Mg alloys has used oversimplified models that lead to
incorrect predictions, despite using accurate ab initio data
as inputs [20–23].
In a multicomponent system, diffusivity is described

using Onsager transport coefficients LAB, which relate the
flux JA of species A to a chemical potential gradient of
species B: JA ¼ −

P
BL

AB∇μB. For vacancy-mediated
diffusion of a two-component alloy, the transport coeffi-
cients for solutes and vacancies are Lss, Lvv, and the off-
diagonal coefficient Lsv ¼ Lvs. In the dilute limit, the
solute diffusivity Ds ¼ ðkBT=csÞLss is proportional to
the vacancy concentration cv and cs is the solute concen-
tration. The off-diagonal coefficient can be either positive
or negative: the drag ratio LsvðLssÞ−1 is positive when the
flow of vacancies drags solutes in the same direction, and
negative when solute flows in the opposite direction to
vacancies. The off-diagonal transport coefficient Lsv can
change sign at the crossover temperature Tcross. The drag
ratio determines how vacancies (e.g., during solidification
or irradiation) transport solute to produce nonequilibrium

solute segregation, change precipitation rates, or induce
the Kirkendall [24] and nano-Kirkendall [25] effects.
Anisotropy in the drag ratio leads to unusual flow patterns
of solutes [26].
To predict transport coefficients in magnesium alloys, we

use a symmetry analysis for automated discovery and
cataloging of transitions combined with an analytic, exact
Green function (GF) approach that avoids uncontrolled
approximations [27,28]. We identify transitions that are
incorrectly treated by the standard eight-frequency model
for hexagonal close packed (hcp) crystals [29–31] and even
by the recent 13-frequency model [32]. The transition state
energy of each transition identified by the symmetry
analysis is computed ab initio, and directly informs the
GF calculation of the transport coefficients. We find
significant errors in the drag ratios and solute diffusivities
computed by previous models for many technologically
important solutes in magnesium. The correct description of
the vacancy jump network topology illuminates the atom-
istic-scale diffusion mechanisms, and the exact calculation
of transport coefficients in the dilute limit enables pre-
dictive mesoscale modeling of alloys.
Computing transport coefficients requires accurate sol-

ute-vacancy binding and transition state energies and
entropies from ab initio. We use the plane wave basis
Vienna ab initio simulation package (VASP) [33–36] with
the projector augmented-wave method [37,38], the Perdew-
Burke-Ernzerhof generalized gradient approximation
exchange-correlation potential [39], and Brillouin zone
integration with a Monkhorst-Pack mesh and Methfessel-
Paxton smearing [40,41]. The lanthanide elements are
treated with a frozen 4f core, which introduces small
errors (below 20 meV) for pure element structures [42], and
Al-RE convex hulls [43], and is the basis for previous Mg-
RE calculations [44]. All convergence criteria are chosen to
keep numerical errors below 1 meV (cf. the Supplemental
Material [45]). The climbing-image nudged elastic band
method with one intermediate image determines transition
state configurations and energies [52], and harmonic
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transition state theory [53] with the hopping atom approxi-
mation [54,55] computes Arrhenius attempt frequencies
(rates). Tables SII–SIV in the Supplemental Material [45]
show good agreement (deviations below 30 meV) between
our calculations and previous calculations [21–23,44,
56–61] for the vacancy formation energies and solute-
vacancy binding, where available. Tables SV and SVI [45]
compare the limited set of transition state energies required
in the eight-frequency model from previous work [20–23]
with our complete data set [45].
An exact GF approach [27] computes the transport

coefficients for dilute solutes and vacancies from our
ab initio data. The hexagonal lattice ensures that the
transport coefficients are diagonal but anisotropic with
different basal plane and c-axis values. The symmetry
operations in the hcp space group P63=mmc [62] determine
equivalent solute-vacancy complex states and equivalent
transition states. We identify transition states by the initial
and final states, and consider two transition states equiv-
alent when a single space group operation can simulta-
neously transform the initial and final states for one
transition state into the other. From the solute-vacancy
probabilities and transition rates, we treat the correlated
random walk [63–65] using the vacancy Green function:
first computed in the absence of the solute, and then
corrected for the presence of solute using the Dyson
equation. We compute the Green function without solute
in reciprocal space, and the Dyson equation correction in
real space, taking advantage of computer-determined sym-
metry [28]. This approach is a generalization of the matrix
method [66–68]. For the dilute limit with a single solute
and single vacancy, the calculated transport coefficients are
exact [27].
In the hcp crystal, there are two unique first nearest-

neighbor vacancy-solute complexes and seven complex
configurations that are one transition away; Fig. 1 shows
these complexes out to 6b. A solute has six first neighbors
in the same basal plane (1b sites), and six in the neighbor-
ing basal planes (1p sites). We expect these complexes to
have the strongest solute-vacancy binding energy. The
solute-vacancy binding also changes the transition states
for vacancy motion, leading to various types of jumps:
exchange with the solute, jumps between first neighbor
sites, and jumps away from the solute. The latter generates
seven complex configurations; in the eight-frequency
model, these seven complexes and all further ones are
assumed to have no vacancy-solute binding.
Figure 2 enumerates the 15 unique transitions for first

neighbor vacancy-solute complexes. Away from a solute,
the vacancy can jump in a basal or pyramidal direction. The
symmetry unique transitions for complexes includes two
types of vacancy-solute exchanges, four transition states
between first neighbor complexes, and another nine tran-
sitions from the two first neighbor to the seven different
“outer” complexes, which correspond to dissociation.

FIG. 1. Possible vacancy-solute complexes out to sixth nearest-
neighbors in a hcp crystal. Complexes are identified by the
position of the vacancy relative to the solute (orange “s”). There
are nine unique complexes, corresponding to 56 configurations
after applying symmetry operations; vacancy positions below the
solute are not shown. Complexes are labeled by the shell distance
between solute and vacancy (lighter colors correspond to larger
separation), and with “b” (basal), “p” (prismatic), and “c”
(c axis). Vacancy neighbor distance is insufficient to identify
symmetry unique complexes: the 1b and 1p complexes, and 4b,
4b, and 4p complexes, each have different binding energies.
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FIG. 2. Vacancy (v) jumps in an hcp crystal from 1b and 1p
complexes, divided into basal and pyramidal jumps. The 24
jumps correspond to two solute-vacancy exchanges (black and
red arrows), eight vacancy reorientations around the solute
(arrows in blue), and 14 solute-vacancy complex dissociations
(arrows in green with an outline in black from the 1b configu-
ration and an outline in red from the 1p configuration). In
particular, two reorientation jumps of the 1b complex that the
eight-frequency model treats as equal are not related by sym-
metry: 1b-1b (cyan) and 1b-1b (dark blue) jumps in the top-left
figure. The symmetry inequivalence can be identified by the
different Mg atoms neighboring the transition states: Mg at 2p
sites for 1b-1b jumps and 1p sites for 1b-1b jumps.
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In contrast, the standard eight-frequency model [29–31]
assumes that the two different 1b to 1b transitions, which
we call 1b-1b and 1b-1b, have equal transition rates.
Moreover, it assumes that all of the dissociation transition
rates can be reduced to two: one out of the 1b site, and one
out of the 1p site [69]. However, we find that Zn, Al, and
rare earth elements have markedly different migration
barriers for 1b-1b and 1b-1b jumps and have different
dissociation barriers (cf. the supplemental Tables SV and
SVI [45]). Recently, Nandipati et al. also found the
distinction between the 1b-1b and 1b-1b jumps using
self-learning kinetic Monte Carlo calculations [70]. As
previous computational studies [20–23] relied on the eight-
frequency framework to model diffusion and identify
which transition states to compute, these uncontrolled
approximations can cause significant quantitative and
qualitative errors in transport coefficients. Note that even
the recent 13-frequency model of Allnatt et al. also assumes
that 1b-1b and 1b-1b jumps are equivalent [32].
Solute drag requires a “ring” network around the solute

[71,72], so that the vacancy-solute complex can reorient
and produce long-range diffusion; Fig. 3 shows the three
minimal rings with the necessary pairs of jumps. For a
complex to diffuse as a unit, a vacancy-solute exchange
must be followed by vacancy reorientation jumps around
the solute; otherwise, exchanges keep the complex in place.
To make a ring network in hcp crystals requires at least two
“fast” jump rates. However, the network topology is such
that out of the six possible pairs of jumps, only three are
able to produce reorientation rings. Two pairs of transitions
—combining 1p-1p with 1b-1b or 1b-1b—clearly lack
sufficient connectivity to reorient a complex in arbitrary
ways. It is surprising that combining 1p-1b jumps with
1b-1b jumps fails to produce reorientation while combining
1p-1b jumps with 1b-1b jumps does; this asymmetric jump
network topology for 1b-1b and 1b-1b jumps has signifi-
cant impact on the drag ratios.
Figure 4 shows the errors from using the eight-frequency

and 13-frequency framework to compute the drag ratios of
Zn and Al in Mg. For Zn and Al, the reorientation rates in
the ring network are fast and there is a significant difference

in the 1b-1b and 1b-1b migration barriers, with lower
1b-1bmigration barriers (by 0.22 eV for Zn and by 0.14 eV
for Al). The eight-frequency and 13-frequency frameworks
enforce enforces ω1b-1b ¼ ω1b-1b, which produces signifi-
cant errors. The faster ω1b-1b rate gives a higher drag ratio,
while the slower ω1b-1b rate gives a lower drag ratio—
neither of which agrees with the exact GF result. The
correct behavior is difficult to reproduce with either
framework, as the ω1b-1p rate is slower than the ω1b-1b
rate, but faster than ω1b-1b rate: the first two ring networks
in Fig. 3 contribute significantly to drag, but choosing a
single value of ω1b-1b ¼ ω1b-1b affects the two rings differ-
ently. Moreover, all prior density-functional theory calcu-
lations [20–23] only computed one of the two barriers, as
the eight-frequency model does not suggest that there are
two distinct jumps to consider. This error does not impact
the c-axis drag ratio, while a small change in solute
diffusivityDs is observed. It does explain the discrepancies
in the migration barrier reported by different authors, as
each selected either 1b-1b or 1b-1b jumps.
Figure 5 shows the drag ratio is also affected by different

dissociation rates for La, Nd, Gd, and Y in Mg. For these
solutes, association and dissociation rates are faster than
reorientation, and positive drag ratio results from an outer
vacancy ring network around the solute—similar to the
behavior in bcc and fcc lattices [71,72]. There are three
outer ring networks that can contribute to drag: 1b-4b and
1b-4b, 1p-2p and 1b-2p, and 1b-4p, 1p-4p, and 1p-3c.
The eight-frequency and 13-frequency frameworks reduce
all nine of the different association or dissociation transition
states to two—1b-∞ and 1p-∞—or four—a basal and
pyramidal type jump of 1b-∞ and 1p-∞—where “∞” is
any non–first neighbor complex. We compare our full
calculation to the eight-frequency (using 1b-6b and 1p-5p
rates) and 13-frequency (using 1b-6b, 1b-4p, 1p-4p, and

0
0
0
1

FIG. 3. Minimal networks of reorientation jumps for 1b and 1p
complexes. Left: network in the basal plane requiring only 1b-1b
and 1b-1b jumps. Middle: network of 1p-1b and 1b-1b jumps.
Right: network of 1p-1b and 1p-1p jumps. The other three
pairings of jumps do not form closed ring networks, and are not
shown. Ring networks are necessary for a complex to diffuse as a
unit, leading to positive drag ratios.
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FIG. 4. Effect of 1b-1b and 1b-1b asymmetry on the drag ratio
LsvðLssÞ−1 of Zn and Al. Both the eight-frequency and 13-
frequency framework assumes ω1b-1b and ω1b-1b rates to be equal;
this gives different basal drag ratios if ω1b-1b or ω1b-1b is used for
both rates (dotted-dashed lines), but does not affect c-axis
diffusion. The GF method treats the nonequivalent transitions
when computing the correct basal drag ratio (solid lines). The
eight-frequency and 13-frequency framework introduce addi-
tional approximations which affect drag ratios and crossover
temperatures, and incorrectly predict large anisotropy in drag
ratios.
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1p-5p rates) models. These dissociation jumps in the eight-
frequency model for La, Nd, Gd, and Y are the slowest
dissociation rates; hence, the eight-frequency model under-
predicts the vacancy residency time in the outer ring
network. This impacts the drag ratio, where the eight-
frequency framework predicts no drag for Nd, Gd, and Y,
and reduced drag for La. The improved 13-frequency
model still has error in drag for Gd and Y due to the
incorrect contribution from the 1b-4p, 1p-4p, and 1p-3c
ring as well as from the ω1b-1b ¼ ω1b-1b rate assumption.
Table I shows improvement in solute diffusivity pre-

dictions for rare-earth and Ca solutes compared with
available experimental data. The assumptions made in

the eight-frequency framework lead to inaccurate calcu-
lation of correlation factors and activation energies. Ghate
[30] assumed a constant value for the vacancy escape factor
F ¼ 0.736 in the eight-frequency model for solute corre-
lation factors [fA;z, fA;b, and fB;x in Eqs. (12)–(16) of
Ref. [30]] affecting the probability for a vacancy return
after dissociation. Manning showed that in fcc crystals, F
depends on the ratio of the vacancy solute association rate
and the vacancy migration rates in the bulk, and hence
depends on temperature [63]. The GF approach correctly
computes F and its dependence on all of the transition rates
near the solute [27]. The errors from the eight-frequency or
13-frequency model are solute dependent, and are larger for
solutes with faster dissociation and exchange rates. Hence,
rare earth solutes have activation energies for diffusion that
are lowered by 0.05–0.1 eV, improving agreement with
experimental measurements for all except Ce. The cross-
over temperature shows significant error when computed
using the eight-frequency framework, with some improve-
ment as some approximations are eliminated in the
13-frequency framework. The remaining disagreement
with experiment suggests new experimental studies, and
a reexamination of the appropriateness of the frozen
4f-core approximation for lanthanides, especially for Ce.
A full symmetry analysis of solute-vacancy complex

states and transition states combined with an exact Green
function methodology removes uncontrolled approxima-
tions from transport modeling, and reveals significant
errors in previous calculations. Identifying the symmetry
unique transitions in the vacancy jump network elucidates
the fundamental mechanisms responsible for solute drag
and provides quantitative values for transport coefficients.
Our analysis has application to diffusivity calculations
in other crystalline systems—especially where the sol-
ute-vacancy binding extends beyond first neighbors.
Removing uncontrolled approximations from the predic-
tion of transport coefficients is important for the validation
of ab initio methods, from which we can identify possible
systematic errors in the computation of atomic-scale

TmTm

GF
8-freq.
13-freq.

basal c-axis

FIG. 5. Effect of dissociation rates on the drag ratio LsvðLssÞ−1
of La, Nd, Gd, and Y. The eight-frequency framework (dashed
lines) and 13-frequency framework (dotted lines) reduce the nine
distinct dissociation rates to 2 and 4, which causes errors in both
the basal and c-axis drag ratios. The 13-frequency framework
improves over the eight-frequency model but still has errors in the
drag ratios for Gd and Y, and predicts incorrect anisotropy. Filled
regions in gray with the bounds for basal drag from the eight- and
13-frequency model capture the approximation of ω1b-1b or ω1b-1b
rates. Table I includes additional data on crossover temperatures.

TABLE I. Activation energies of diffusionQ and crossover temperatures Tcross computed with the GF method, eight-frequency model,
13-frequency model, and available experimental data in the basal plane and along the c axis. All values are reported as basaljcaxis, while
Nd, Ce, and La experiments correspond to polycrystals. Activation energies using the GF method are lower by ∼0.1 eV compared to the
eight-frequency model for Nd, Ce, La, and Gd; this improves the agreement with experiment for all except Ce. There are significant
changes to crossover temperatures, the eight-frequency calculation does not predict drag for Gd and Y, and the 13-frequency predictions
are off by more than 100 K for Nd, Ce, La, and Ca along the c axis and for Gd and Y in the basal plane.

Q (eV) Tcross (K)

Solute Eight frequency 13 frequency GF Experiment Eight frequency 13 frequency GF

Nd 1.18j1.20 1.12j1.12 1.08j1.13 1.16 [18] < 100 438j507 529j422
Ce 1.14j1.15 1.07j1.07 1.03j1.09 1.82 [12] 252j287 635j721 648j589
La 1.10j1.11 1.02j1.03 1.00j1.04 1.06 [12] 415j452 795j881 746j714
Gd 1.24j1.26 1.19j1.18 1.16j1.17 0.82j0.85 [16] � � � 175j155 341j218
Y 1.25j1.27 1.21j1.21 1.20j1.21 1.01j1.02 [16] � � � 106j < 100 271j190
Ca 1.12j1.14 1.09j1.09 1.08j1.11 1.07 [19] 309j343 538j598 538j501

PRL 118, 105901 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 MARCH 2017

105901-4



diffusion mechanisms. Our results also show the impor-
tance of proper symmetry analysis to identify atomic scale
transport mechanisms, even for well-studied crystalline
systems like hcp crystals.
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