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We show how dispersionless channels exhibiting perfect spin-momentum locking can arise in
a 1D lattice model. While such spectra are forbidden by fermion doubling in static 1D systems, here
we demonstrate their appearance in the stroboscopic dynamics of a periodically driven system. Remarkably,
this phenomenon does not rely on any adiabatic assumptions, in contrast to the well known Thouless pump
and related models of adiabatic spin pumps. The proposed setup is shown to be experimentally feasible with
state-of-the-art techniques used to control ultracold alkaline earth atoms in optical lattices.
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Introduction.—Exploring the rich phenomenology of
spin-orbit coupling is an active field of research in
numerous branches of quantum physics [1–3]. The
discovery of helical edge states [4–6] has opened the
route towards perfect spin-momentum locking, charac-
terized by a one-to-one correspondence between the
propagation direction of particles and their spin. Such
exotic states have only been realized at the surface of 2D
topological insulators [4,7–10]. Without the 2D bulk,
their occurrence is forbidden in 1D lattice systems [10],
as the periodicity of band structures in the first Brillouin
zone (BZ) imposes fundamental constraints—referred
to as fermion doubling [11] [cf. Fig. 1(a)]. Harnessing
the unique properties of periodically driven quantum
systems [12–17], here we show how these limitations
can be circumvented: we find perfect spin-momentum
locking in the stroboscopic dynamics of a periodically
driven 1D lattice model. While conventional helical
edge states require a time-reversal symmetric topological
2D bulk [18], the spin-momentum locking in our 1D
setting stems from topological properties in combined
time-momentum (Floquet) space [see Fig. 1(d)], and
relies on a spin-rotation symmetry of the stroboscopic
dynamics. Our approach goes conceptually beyond adia-
batically projected models such as the Thouless pump
[19,20], in that we consider the full quasienergy spectrum
without involving adiabatic projections.
In Floquet systems, the quasienergies are only defined

modulo the driving frequency Ω, allowing for spectra that
are only periodic in the BZ up to integer multiples of Ω.
However, even in driven systems, unidirectional motion in
1D systems cannot be achieved without adiabatic assump-
tions, due to fundamental topological constraints [21]. The
central result of this Letter is that the Floquet Bloch
Hamiltonian (ℏ ¼ 1)

HF ¼ vkσz ð1Þ

exhibiting the perfect spin-momentum locking [see
Fig. 1(c)] familiar from the helical edge states of 2D
topological insulators can still be achieved in a microscopic
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FIG. 1. (a) Illustration of basic constraints by fermion doubling
in 1D lattice systems: The left plot shows an ordinary metallic
band which must be periodic in the first Brillouin zone, while the
unidirectional channel in the right plot violates this periodicity
and, hence, is forbidden by fermion doubling. (b) Schematic of
the proposed driving protocol. The spin-flip hopping [see H1 in
Eq. (2)] acts during the first half-period ½0; T=2Þ, while on-site
spin flips [see H2 in Eq. (2)] characterize the second half-period
½T=2; TÞ. (c) Floquet band structure of the proposed lattice model
[see Eqs. (2), (3)] with perfect spin-momentum locking. Param-
eters are α ¼ β ¼ π=T. (d) Illustration of the toroidal time-
momentum space T 2.
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1D lattice model. Equation (1), with the lattice momentum
k and standard Pauli matrix σz, describes two spin species
that independently perform an opposite unidirectional and
dispersionless motion with velocity v.
Remarkably, such behavior is possible beyond adiabatic

dynamics even though the unidirectional motion of a
single spin species cannot be achieved. To see this, we
note that HF in a Floquet system generates the strobo-
scopic dynamics described by the time-evolution operator
UðT; 0Þ ¼ e−iH

FT over one driving period ½0; TÞ with
T ¼ 2π=Ω. During the so-called micromotion within a
period, the two spin species are necessarily intertwined
in a topologically nontrivial fashion [see Fig. 1(b) and
Fig. 2] as we discuss below. In addition, we provide an
experimentally feasible proposal for realizing this sce-
nario with ultracold alkaline earth atoms (AEAs) in optical
lattices.
Lattice model with perfect spin-momentum locking.—We

consider a Floquet system of fermions with spin 1=2
annihilated by the spinor operators ψ j ¼ ðψ j↑;ψ j↓Þ on a
1D lattice with unit lattice constant. The driving protocol
consists of switching between two noncommuting time-
independent Hamiltonians H1 and H2, such that H1

generates the time evolution during the first half-period
½0; T=2Þðmod TÞ whereas H2 operates during the second
half-period ½T=2; TÞðmod TÞ. The explicit form of H1 and
H2 reads as [see Fig. 1(b) for an illustration]

H1¼−α
X
j

ψ†
jS

þψ jþ1þH:c:; H2¼ β
X
j

ψ†
jσxψ j; ð2Þ

where Sþ ¼ 1
2
ðσx þ iσyÞ flips the spin from down to up and

α, β are real coupling constants [22]. Both H1 and H2 are
lattice translation invariant, rendering the lattice momen-
tum k a good quantum number and allowing us to factorize
the time-evolution operator into momentum components
Ukðt; t0Þ. For the parameter choice α ¼ β ¼ π=T, we
obtain

UkðT; 0Þ ¼ e−iH
k
2
T=2e−iH

k
1
T=2 ¼ e−ikσz ; ð3Þ

whereHk
1 ¼ −α½cosðkÞσx − sinðkÞσy� andHk

2 ¼ βσx are the
Bloch Hamiltonians associated withH1 andH2 [see Eq. (2)],
respectively. Computing the associated Floquet Bloch
HamiltonianHF

k ¼ ði=TÞ log½UkðT; 0Þ� ¼ ð1=TÞkσz, we re-
cover Eq. (1) with the velocity v ¼ 1=T. Note thatHF

k , when
interpreted as a static Bloch Hamiltonian, contains a dis-
continuous jump at k ¼ �π and, hence, cannot be achieved
by any (local) hopping in real space. Quite remarkably,
in the present Floquet setting, it can be achieved—or
practically at least be arbitrarily closely approached—by
simply tuning the parameters α and β in the local instanta-
neous Hamiltonians (2).
The spin-momentum locking in the proposed Floquet

system may be understood at an intuitive level [see also
Fig. 1(b)]. The Hamiltonian H1 drives a hopping process
between nearest-neighbor sites during the first half-period,
where opposite directions of motion are tied to opposite
spin-flip operations. However, once a particle has hopped,
it has the wrong spin to hop into the same direction again,
since ðSþÞ2 ¼ 0. To prevent this deadlock, H2 recharges
the spin-pump during the second half-period by flipping
back the spin on site. Putting together the two half-cycles,
each particle has moved by one site with a perfect spin-
momentum locking after a full period.
Implementation with alkaline earth atoms.—The lattice

model [(2), (3)] may be experimentally implemented with
state-of-the-art techniques for the control of ultracold atoms
[see Ref. [23] for a review], where Raman processes are
employed to design laser-assisted hopping in optical
lattices [24–28]. An ideal experimental platform in this
context is provided by gases of AEAs such as Yb [see, e.g.,
Ref. [27]]. There, the spin degree of freedom σ occurring in
our model is encoded in two Zeeman levels with different
magnetic quantum number mF of the atomic ground state
of 173Yb. Spin-flip processes are then controlled by optical
dipole selection rules of the involved Raman transitions. A
detailed proposal for the implementation of the spin-flip
hopping characterizing H1 based on the experimental tools
of Ref. [27] has recently been published [29]. The on-site
spin-flip processes defining H2 have already been exten-
sively employed experimentally [27] to realize hopping in
so-called synthetic dimensions [30,31], where internal
states of the atom are interpreted as lattice sites in an extra
dimension. To experimentally realize our two-step driving
protocol [see Fig. 1(b)], we propose to use pulsed Raman

FIG. 2. Lower panel: Topologically nontrivial spin micromo-
tion of the Bloch states ju↑k ðtÞi ¼ Ukðt; 0Þju↑k ð0Þi that are
eigenstates of the spin-up Floquet operator U↑

k ðT; 0Þ at strobo-
scopic times t ¼ 0ðmod TÞ. Upper panel: Berry curvature
F↑

k;t ¼ 2Imfh∂ku
↑
k ðtÞj∂tu

↑
k ðtÞig in combined time-momentum

space. Parameters are α ¼ β ¼ π=T ¼ π in all plots.
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lasers switching between laser-assisted spin-flip hopping
(H1) and on-site spin flips (H2). An alternative implemen-
tation of our model may be provided by a superlattice
setting with double-well supersites encoding the spin
degrees of freedom, which can be readily implemented
using alkali atoms [20].
Topological analysis.—We now provide a deeper under-

standing in terms of topology of how the phenomenology
discussed above can arise in a microscopic lattice model
without relying on adiabatic projections. We stress the
different role of topology in our present setting, as
compared to conventional helical edge states. In 2D
topological insulators, a topological invariant associated
with the time-reversal invariant insulating bulk of the
system entails and protects the presence of helical edge
states [4,10]. Here, instead, an emergent spin-rotation
symmetry in the stroboscopic dynamics of the 1D system
allows for the definition of a topological invariant that
entails and protects helical Floquet modes as described by
Eq. (1). The protecting symmetry of the Floquet spectrum
(Floquet symmetry) in our model (2) requires tuning the
system to the parameter line α ¼ β ¼ π=T. However,
below we show with numerical simulations [see Fig. 3]
that, even in the presence of significant deviations from this
ideal situation, clear signatures of the spin-momentum
locking are still experimentally observable. The Floquet
operator UkðT; 0Þ in Eq. (3) with α ¼ β ¼ π=T preserves
Sz ¼ σz=2 and can, hence, be decomposed into two
irreducible blocks Uσ

kðT; 0Þ; σ ¼ ↑;↓. The Floquet wind-
ing number [21] for the individual spin blocks reads as

νσ ¼
1

2πi

I
BZ

dkTr½Uσ
k∂kUσ

k
†� ¼ 1

Ω

I
BZ

dk
X
α

ð∂kϵ
σ;α
k Þ ð4Þ

with the Floquet quasienergies ϵσ;αk for band α in spin block
σ. We note that in our specific model, there is only one band
per spin block. The topological invariant νσ simply counts
the number of chiral Floquet modes with spin σ, i.e.,
Floquet bands which are periodic in the BZ only moduloΩ.
For the model in Eq. (3), νσ ¼ �1 for σ ¼ ↑;↓.
In Ref. [21], a similar Floquet winding number ν has

been introduced, counting the total number of chiral
Floquet modes without assuming a spin-rotation symmetry.
Furthermore, it has been shown that ν is identical to the
Chern number [32,33] of the 2D system characterized by
the Bloch functions juαkðtÞi ¼ Ukðt; 0Þjuαkð0Þi in combined
ðk; tÞ space [see Fig. 1(d)], where α labels the Floquet
Bloch bands and juαkð0Þi is family of eigenfunctions of the
Floquet operator UkðT; 0Þ. This relation implies that a
nonzero ν can only occur in effective models such as the
Thouless pump [19], where some energetically higher-
lying bands have been adiabatically eliminated before
computing the Floquet quasiband structure. This is because
the Chern numbers of all bands obey a zero-sum rule in
lattice models. The intuitive picture behind this rule is that

the Chern number of a subspace with projection Pðk; tÞ ¼P
αjuαkðtÞihuαkðtÞj measures the winding of the orientation

of this subspace in the total Hilbert space. If the considered
Floquet system contains all bands, we have Pðk; tÞ ¼ 1 and
no nontrivial winding is possible.
By contrast, in our microscopic lattice model [(2), (3)],

a nontrivial νσ is possible because the two spin species are
intertwined during the micromotion, i.e., by the time-
evolution operator Ukðt; 0Þ, 0 < t < T. The resulting
winding in spin space of the Bloch functions ju↑k ðtÞi ¼
Ukðt; 0Þju↑k ð0Þi with ju↑k ð0Þi denoting an eigenfunction of

U↑
k ðT; 0Þ is shown in the lower panel of Fig. 2. The Berry

curvature F↑
k;t ¼ 2Imfh∂ku

↑
k ðtÞj∂tu

↑
k ðtÞig is shown in the

upper panel of Fig. 2. Computing the Chern number C↑

associated with the toroidal combined momentum-time
space T 2 [see Fig. 1(d)] yields C↑ ¼ ð1=2πÞ RT 2 F↑ ¼
ν↑ ¼ 1, and, in agreement with the mentioned zero-sum
rule of Chern numbers, C↓ ¼ ν↓ ¼ −1.
Stability of spin-momentum locking.—We now show that

the spin-momentum locking stays robust and clearly
observable even in the presence of deviations from the
parameter line α ¼ β ¼ π=T representing possible exper-
imental imperfections.
We first study the visibility of the spin-momentum

locking for a localized wave packet initialized at site
j ¼ 21 with spin-up polarization. We numerically simulate
a system with a size of L ¼ 40 lattice sites. In the
following, we focus on periodic boundary conditions,
noting that open boundary conditions simply lead to a
perfect reflection of the particles involving a spin flip on the
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FIG. 3. Top: Gap around k ¼ 0 for α ¼ 1.1π=T, β ¼ 0.9π=T.
From left to right, the three plots show the Floquet spectrum of
the system, the total Sz polarization as a function of time, and the
spatially resolved Sz polarization as a function of time. Bottom:
Gap around k ¼ π for α ¼ β ¼ 0.92π=T. The plots are analogous
to those in the top panel.
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outermost sites. In Fig. 3, we summarize our results if (i) a
gap around k ¼ 0 is opened in the quasienergy spectrum by
setting α ≠ β (see top panel), and (ii) if a gap is opened
around k ¼ �π for α ¼ β ≠ π=T (see bottom panel). The
effects of such imperfections are twofold. First, due to the
deviation from a perfectly linear dispersion, the initially
sharply localized wave packet slightly spreads out in real
space. Second, due to a coupling of the two spins, a finite
spectral weight of the opposite spin species (< 5% for a
relative deviation of 10% in the system parameters) is
generated. Our numerical data show that the spin-momen-
tum locking is still clearly visible, even for significant
deviations from the ideal parameter line α ¼ β ¼ π=T.
Generally speaking, in the presence of symmetry break-

ing imperfections, a gap may open around Ω=2 in the
quasienergy spectrum. However, when interpreting the
resulting HF

k as a static band structure, it would still be
extremely challenging to realize, as the corresponding
decay length of the hopping range in real space diverges
on approaching the parameter line α ¼ β ¼ π=T. Instead,
in the present Floquet scheme, an arbitrarily nonlocal HF

k
exhibiting arbitrarily precise spin-momentum locking can
readily be experimentally achieved by (approximately)
tuning the local coupling strengths α and β.
In addition, we study the influence of various imper-

fections that break the translation invariance in our system
(see Fig. 4). Specifically, we consider a single spin-
dependent impurity of strength Vd at site x modeled by
the Hamiltonian Hd ¼ Vdðc†↑;xc↑;x − c†↓;xc↓;xÞ (see Fig. 4,
left panel), and a spin-independent impurity modeled by the
Hamiltonian Hd ¼ Vd

P
σc

†
σ;xcσ;x (see Fig. 4, right panel).

The spin-independent impurity does not have a strong
influence on the dynamics of the wave packet, even for an
impurity strength Vd ¼ 1.5=T. By contrast, the spin-
dependent impurity is found to cause significant scattering,
but the scattered wave packet has both reversed direction of
motion and reversed spin polarization, thus keeping the
spin-momentum locking intact.

Concluding discussion.—For periodically driven 2D
systems, it has recently been shown [12] how chiral edge
states can occur, even if all quasienergy bands are char-
acterized by a zero Chern number—a no go for static
systems. In our present Letter, even without any 2D bulk,
we have found a 1D Floquet counterpart [see Eq. (1)] of
helical edge states known from 2D topological insulators.
Since Eq. (1) cannot be realized as a local Hamiltonian in a
static microscopic 1D lattice model, our results give a new
intriguing example of how periodically driven systems can
dynamically enable the realization of exotic states of
matter. Remarkably, the microscopic model (2) and driving
protocol proposed here is of immediate experimental
relevance as it can be implemented by combining state-
of-the-art techniques to trap and manipulate ultracold
quantum gases.
We note that a unidirectional motion has been recently

realized [34,35] in quantum walk setups [36–38] in a
photonic context. There, the essential physical mechanism
relies on the higher spatial dimension of the setup: A beam
displacer redirects the unidirectional motion of the incident
laser beam into a step of the walk in a perpendicular
direction. By contrast, here we are interested in a fermionic
quantum many-body system in a microscopic 1D lattice
potential, where the dynamics is constrained by fermion
doubling. In an atomic setup, a unidirectional quantum
walk has been engineered based on the adiabatic modula-
tion of spin-dependent lattice potentials (see, e.g., [39,40]),
while our present driving protocol is based on a stationary
lattice potential and does not rely on adiabatic assumptions.
In a broader context, helical channels have been iden-

tified as promising candidates for numerous applications.
In the field of spintronics, their perfect spin-momentum
locking may enable new possibilities to control spin
properties by all electric means. Regarding the realization
of exotic quasiparticles, hybrid systems involving helical
channels coupled to superconductors have repeatedly
appeared, both in the context of Majorana bound states
[41] and, more recently, in the theoretical prediction of
fractional Majorana fermions or parafermions in strongly
correlated systems [42–44]. The Floquet counterpart of
helical channels reported in our present Letter may be of
key interest along these lines: First, from a computational
perspective, our microscopic 1D lattice model (2) will
even in the presence of pairing terms and correlations still
be amenable to first-principles numerical analysis, e.g.,
by means of time-dependent density matrix renormaliza-
tion group techniques. Second, the inherently time-
dependent character of the proposed system may lead to
phenomena in such hybrid systems (see, e.g., Ref. [45] for
the example of Floquet Majorana states at finite quasie-
nergy) that are not found in their static counterparts.
Finally, the simplicity and feasibility of our proposal hold
great promise for the observation of such new physics in
future experiments.

FIG. 4. Left: Scattering due to σz impurity at site x ¼ 6. The
plot shows the spatial distribution of the Sz polarization as a
function of time. Right: Scattering due to σ0 impurity at site
x ¼ 6. The bulk parameters are α ¼ β ¼ π=T and Vd ¼ 1.5=T in
both plots.
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