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We investigate the metal-insulator transition occurring in two-dimensional (2D) systems of non-
interacting atoms in the presence of artificial spin-orbit interactions and a spatially correlated disorder
generated by laser speckles. Based on a high order discretization scheme, we calculate the precise position
of the mobility edge and verify that the transition belongs to the symplectic universality class. We show that
the mobility edge depends strongly on the mixing angle between Rashba and Dresselhaus spin-orbit
couplings. For equal couplings a non-power-law divergence is found, signaling the crossing to the
orthogonal class, where such a 2D transition is forbidden.
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Anderson localization (AL) [1], namely the absence of
diffusion of a coherent wave in a disordered medium due
to the interference between multiple-scattering paths, is a
general phenomenon observed for several kinds of waves,
including light waves in diffusive media [2,3] or photonic
crystals [4,5], ultrasound [6], microwaves [7], and atomic
matter waves [8–10], the latter describing the behavior of
atoms in the low-temperature quantum regime.
Since AL finds its origin in interference effects, the space

dimension as well as the symmetries of the model play a
crucial role [11].When both spin-rotational and time-reversal
symmetries are preserved, the system belongs to the orthogo-
nal universality class. While AL is the generic scenario in
one and two dimensions, in higher dimensions an Anderson
phase transition occurs at a critical value of the energy
E ¼ Ec, called the mobility edge, separating localized states
at lower energy from diffusive states at higher energy.
The inclusion of spin-orbit coupling (SOC) breaks SU(2)

invariance and drives the system towards the symplectic
universality class. The spin of the particle rotates as the
latter moves around a closed loop and the direct and the
time-reversed paths (on average) interfere destructively
rather than constructively, favoring diffusion rather than
localization [12]. This spin-interference effect, called
(weak) antilocalization, has already been observed for
2D electron gases in semiconductor quantum wells or at
the surface of topological insulators. A distinctive feature
of the symplectic class is the occurrence of a 2D Anderson
transition [13–15] for strong SOC, but its experimental
evidence is still lacking.
Ultracold atoms are natural candidates to fill the gap.

Effects from atom-atom interaction can be reduced via
Feshbach resonances and a tunable random potential can be
generated from laser speckles [16]. Thus far, experiments
have focused on the orthogonal class. Recent achievements
include the observation [17] of coherent backscattering in

2D systems and the study [18–20] of the mobility edge
for the 3D Anderson transition. From the theoretical front,
accurate numerical calculations [21–24] for Ec have
appeared, going beyond approximate estimates [25–27].
Atomic gases have also been employed to realize exper-
imentally the quantum kicked rotor model and to study AL
in momentum space. This setup has allowed a detailed
investigation [28,29] of the 3D Anderson transition and the
observation of 2D AL [30]. Parallel to these developments,
significant experimental and theoretical progress has been
made to create and control artificial SOC for cold atoms
with the aim of exploring topological phases of quantum
matter (for a review, see Refs. [31,32]). Very recently, a
synthetic SOC with tunable Rashba [33] and Dresselhaus
[34] terms has been experimentally realized [35] in 2D
atomic gases, opening a new avenue to explore Anderson
transitions in the symplectic class.
In this Letter we investigate the 2D Anderson transition

in atomic gases with artificial SOC and subject to a laser
speckle potential. We calculate numerically the precise
position of the mobility edge, taking into full account the
potential distribution and the spatial correlations of the
disorder. In particular, (i) we identify a regime where Ec
depends linearly on the disorder amplitude, with a slope
decreasing and changing sign as the SOC increases
(Fig. 2), and (ii) we show that the interference between
Rashba and Dresselhauss SOC leads to a strong dependence
of Ec on the mixing angle with a non-power-law divergence
as the two magnitudes coincide (Fig. 3). Hence, by tuning
the SOC one can induce an interesting crossover between
symplectic and orthogonal universality classes.
Previous theoretical studies of atomic gases in the

presence of both disorder and SOC have addressed AL
in 1D quasiperiodic lattices [36], the dynamics of a 1D
Bose-Einstein condensate [37], and the competition
between disorder and superfluidity in 2D Fermi gases [38].
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The Hamiltonian of a spin-1=2 atom of mass m in the
presence of linear SOC is given by

H ¼
�
k2

2m
þ VðrÞ

�
1þ λRðkyσx − kxσyÞ

þ λDðkyσx þ kxσyÞ; ð1Þ

where k ¼ −i∇ is the momentum of the particle (we use
the convention ℏ ¼ 1) and VðrÞ is the external speckle
potential. Moreover, 1 is the 2 × 2 identity matrix, σx, σy
are the Pauli matrices, and λR and λD correspond to the
strengths of the Rashba and Dresselhaus couplings, respec-
tively (for a discussion about realistic schemes to imple-
ment such a model with cold atoms, see Ref. [39]). In the
absence of disorder, a pure Rashba coupling yields split
energy dispersions Ek� ¼ k2=2m� kλR, with k ¼ jkj. The
ground state occurs at k ¼ mλR with energy −mλ2R=2.
In the following we shall focus on blue-detuned speck-

les, as employed in recent experiments [18–20]. Their
potential distribution follows the Rayleigh law [40,41]:

PðVÞ ¼ ΘðV þ V0Þ
V0

exp

�
−
V þ V0

V0

�
; ð2Þ

where Θ is the Heaviside (unit step) function and V0 is
related to the variance by hV2i ¼ V2

0. Notice that in Eq. (2)
we have shifted the potential by its average value, without
loss of generality.
We generate the speckle potential numerically by first

computing the normalized electric field amplitude ϵðrÞ,
whose real and imaginary parts are normally distributed
random variables with zero mean and unit variance. This
quantity is then convoluted with the point spread function
hðrÞ of the diffusive glass plate. Let us call fðrÞ the
modulus square of the result; that is, fðrÞ ¼
j R dr0ϵðr0Þhðr − r0Þj2. Then the disorder potential is given
by VðrÞ ¼ V0ðfðrÞ=fav − 1Þ, where fav ¼

R
drfðrÞ=S is

the spatial average of f, with S being the surface area.
The spatial correlation function of the 2D speckle pattern

can be written as hVð0ÞVðrÞi ¼ V2
0jhðrÞ=hð0Þj2. For a

circular aperture, the Fourier transform of the point spread
function is an Airy disk, ~hðkÞ ¼ Θðk0 − jkjÞ, where
k0 ¼ αkL, α being the aperture angle and kL the wave
vector of the laser beam. By using

R
2π
0 e−ikr cos θdθ ¼

2πJ0ðkrÞ and
R k0
0 J0ðkrÞkdk ¼ J1ðk0rÞk0=r, JnðxÞ being

the Bessel function of order n, we obtain

hVð0ÞVðrÞi ¼ V2
0

4J21ðr=σÞ
ðr=σÞ2 ; ð3Þ

where σ ¼ 1=k0 is the correlation length of the speckle
pattern (see Supplemental Material [42]). In the following
we measure all energies in units of the correlation
energy Eσ ¼ 1=ðmσ2Þ.

In order to calculate the precise position of the mobility
edge, we discretize the stationary Schrodinger equation,
HΨ ¼ EΨ, on a grid by replacing first and second order
derivates by finite differences. Here Ψ ¼ ðψ↑ψ↓Þt is the
two-component spinor wave function and E is the energy of
the particle. The simplest procedure, as employed in
Ref. [21], is to use the second order central approximation:
∂xψσ ¼ ðψ iþ1jσ − ψ i−1jσÞ=ð2ΔÞ þOðΔ2Þ and ∂xxψσ ¼
ðψ iþ1jσ þ ψ i−1jσ − 2ψ ijσÞ=Δ2 þOðΔ2Þ (and analogously
for the y variable). Here ψ ijσ ≡ ψσðr ¼ Δiex þ ΔjeyÞ,
ex and ey being the unitary vector along the x and y axes,
respectively, and Δ the discretization step. This turned out
to be unpractical for strong SOC, as it requires very fine
grids to get converged results for the transmission ampli-
tude, increasing significantly the computational effort [42].
For this reason, we have used the fourth order approxi-
mation: ∂xψσ¼ð−ψ iþ2jσþψ i−2jσþ8ψ iþ1jσ−8ψ i−1jσÞ=
ð12ΔÞþOðΔ4Þ and ∂xxψσ¼ð−ψ iþ2jσ−ψ i−2jσþ16ψ iþ1jσþ
16ψ i−1jσ−30ψ ijσÞ=ð12Δ2ÞþOðΔ4Þ.
The retained scheme yields a generalized 2D

Anderson model, where the coupling also extends to
next-to-nearest neighboring sites. We consider a strip-
shaped grid with L sites in the longitudinal direction
and M sites in the transverse one, with M ≪ L. We also
impose periodic boundary condition in the transverse
direction to reduce finite-size effects. In this quasi-1D
geometry, the system is Anderson localized and we use
the transfer matrix method [43] to accurately compute its
transmission amplitude T. For large L, the latter decays
exponentially as T ∝ expð−2L=λMÞ, λM being the 1D
localization length.
The critical point of the Anderson transition can be

identified by calculating the ratio λM=M as a function of
energy and for increasing values of M, as shown in Fig. 1
(main panel). Here we have considered a pure Rashba
SOC with strength λRmσ ¼ 0.03 and disorder amplitude
V0 ¼ Eσ. The grid spacing is Δ ¼ 0.2πσ and M varies
between 200 and 350. Since the log of the total trans-
mission is a self-averaging quantity, we have calculated it
for grids of length L ¼ 50000 using 336 different realiza-
tions of the disorder, and then averaging the obtained
results. In this way the relative error in the 1D localization
length is below 0.7%.
At low energy, in the localized regime, λM converges to

the 2D localization length ξ ¼ limM→∞λM as M becomes
large, implying that the ratio λM=M decreases with M. In
contrast, at high energy, in the metallic phase, λM=M
increases with M, whereas at the critical point, the ratio
takes a (finite) constant value, limM→þ∞λM=M ¼ Λc.
From the crossing point in Fig. 1, we find Ec ≃ 0.256Eσ

and Λc ≃ 1.85.
Next, we show that the 2DAnderson transition discussed

here belongs to the symplectic class. According to the one
parameter scaling theory, the ratio λM=M can be written in
terms of a scaling function f as
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λMðEÞ
M

¼ f(uðωÞM1=ν); ð4Þ

where u is a function of the reduced energy ω ¼
ðE − EcÞ=Ec and ν is the critical exponent. In Eq. (4)
we have neglected possible contributions coming from
irrelevant terms, since our values of M are relatively large
and no sizable drift of the crossing point is observed
in Fig. 1.
A first estimate of the critical exponent can be obtained

by linearizing the functions f and u in the proximity of
the mobility edge. By substituting fðxÞ ¼ a0 þ x and
uðωÞ ¼ b1ω in Eq. (4), where a0 and b1 are unknown
constants, and taking the derivative of both sides with
respect to the energy, we obtain that at the critical point

dλM
dE

¼ b1
Ec

M1þ1=ν: ð5Þ

We calculate the derivative in Eq. (5) via central difference
using our numerical data at E ¼ 0.24Eσ and E ¼ 0.28Eσ,
taking into account their statistical uncertainty. The result is
then plotted in the inset of Fig. 1 as a function ofM, using a
log-log scale. By fitting the data with a straight line of
slope 1þ 1=ν, we find ν ¼ 2.69� 0.21, which is fully
consistent with the best available [44,45] estimate

ν ¼ 2.73� 0.02 for the 2D Anderson transition in the
symplectic class obtained in lattice models with ran-
dom SOC.
We can further improve the accuracy of our results by

using the entire numerical data set. For this purpose, the
functions u and f are Taylor expanded up to orderm and n,
respectively, yielding uðωÞ ¼ P

m
j¼1 bjω

j and fðxÞ ¼P
n
k¼0 akx

k, with a1 ¼ 1. The total number of fitting
parameters is then given by 2þmþ n. Following
Ref. [46], we perform a nonlinear least squares fit of the
data, to extract the best estimates for the fitting parameters
and their error bars. With n ¼ m ¼ 3, we obtain
Ec=Eσ ¼ 0.256� 0.002, ν ¼ 2.67� 0.14, and a0 ¼ Λc ¼
1.855� 0.02, corresponding to a reduced chi square
χred ¼ 0.32. Similar results can be found using smaller
values of m and n, by narrowing the fitting region
around the mobility edge. Notice that, for fixed periodic
boundary conditions and in the absence of discretization
effects, Λc is also universal. Our result compares well
with the value Λc ¼ 1.844� 0.002 obtained in
Refs. [44,45], suggesting that discretization effects are
indeed rather small.
In Fig. 2 we show the calculated mobility edge as a

function of V0 for increasing values of λR, going from
mλRσ ¼ 0.03 (top curve) to mλRσ ¼ 1.256 (the inclusion
of the Dresselhaus term will be discussed later). For
vanishing SOC and finite disorder strength, all states are
localized and Ec → þ∞. We see in Fig. 2 that the mobility
edge exhibits a kink around V0 ∼ Eσ followed by an
approximately linear behavior in the strong disorder
regime, which is reminiscent of classical percolation.
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FIG. 1. Numerical calculation of the critical point of the 2D
Anderson transition for cold atoms with synthetic Rashba SOC in
a blue-detuned speckle. After discretization of the model on a
strip-shaped grid of spacing Δ, height M, and length L ≫ M, we
use the transfer-matrix method to calculate the localization length
λM. The main panel shows the ratio λM=M as a function of energy
calculated for increasing values of M ¼ 200 (top curve on the
left), 250, 300, 350, assuming Δ ¼ 0.2πσ. The crossing point
corresponds to the mobility edge, E ¼ Ec ≃ 0.256Eσ , with
Eσ ¼ 1=ðmσ2Þ, σ being the correlation length of the speckle;
see Eq. (3). The Rashba strength ismλRσ ¼ 0.03 and the disorder
amplitude is V0 ¼ Eσ . The inset shows the evaluation of the
critical exponent ν from the scaling behavior of dλM=dE at the
mobility edge; see Eq. (5).
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FIG. 2. Mobility edge Ec of the 2D Anderson transition
separating low-energy localized states ðE < EcÞ from high-
energy diffusive states ðE > EcÞ, plotted as a function of the
disorder amplitude V0 and for increasing values of the Rashba
spin-orbit coupling λRmσ ¼ 0.03 (top curve), 0.1, 0.3, and 1.256,
assuming λD ¼ 0. The black line corresponds to the energy
bottom E ¼ −V0 −mλ2R=2, below which no single particle state
exists. Notice the linear behavior of Ec for V0=Eσ ≳ 1.
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Remarkably, the slope depends on the value of the Rashba
SOC, changing continuously from positive to negative
values as λR increases. In contrast, for strong SOC, Ec
always decreases as V0 increases, a situation already
encountered for atoms in blue-detuned 3D laser speckles
[21,22] without SOC.
Notice that discretization effects become more and

more important as λR increases (for λRmσ ¼ 1.256, we
have used Δ ¼ 0.15πσ). Indeed, the grid spacing must
satisfy Δ ≪ minðσ;lsoÞ, where lso ¼ π=ðmλRÞ is the spin-
precession length. For strong SOC, lso becomes the
shortest length scale in the problem, implying that very
fine grids are needed to accurately compute the position of
the mobility edge [42]. Altogether, data shown in Fig. 2
required 700 000 h of allocation time on a supercomputer
with 2 Pflop/s.
Thus far, we have mainly focused on a pure Rashba SOC

by setting λD ¼ 0, but the same results hold for a pure
Dresselhaus SOC of the same strength. Indeed, the trans-
formation kx → −kx in Eq. (1) interchanges the Rashba
and the Dresselhaus terms, leaving the total Hamiltonian
invariant. Let us now investigate the behavior of the
mobility edge when both terms are present and interfere
between each other (weak antilocalization contributions
to conductivity from Rashba and Dresselhaus SOC are
indeed not additive, see Ref. [47]). For this we write
λR ¼ vso cos θ and λD ¼ vso sin θ, where vso ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2R þ λ2D

p
and θ ¼ arctanðλD=λRÞ is the mixing angle. In Fig. 3 we
show the position of the mobility edge as a function of the

mixing angle for vso ¼ 0.5=mσ and V0 ¼ Eσ. Since Ec is
invariant under the transformation θ → π=2 − θ, it is
sufficient to study it for θ varying between 0 (pure
Rashba) and π=4 (equal strengths of Rashba and
Dresselhaus SOC). At θ ¼ π=4 the system is known
[48,49] to exhibit an exact SU(2) symmetry, which gen-
erates persistent spin-helix and is robust against spin-
independent disorder.
We see in Fig. 3 that the mobility edge is strongly

dependent on the mixing angle and diverges as θ approaches
π=4. Indeed, for λR ¼ λD, the SOC term in Eq. (1) reduces to
2λRkyσx. Since σx is Hermitian and commutes with H,
we can find common eigenstates for the two operators.
Taking into account that the eigenvalues of σx are ϵ� ¼ �1,
the Hamiltonian decouples into two scalar sectors,
H� ¼ ½k2=2mþ VðrÞ� � 2λRky, implying that spin scatter-
ing is absent and the 2D model belongs to the orthogonal
class, for which all states are localized and Ec ¼ þ∞.
Avery interesting and novel question concerns the nature

(power law, logarithmic, etc.) of the divergence observed
in Fig. 3. According to Wegner’s theory [50] (see also
Ref. [51]), which holds for quantum models in 2þ ϵ spatial
dimensions, a small term breaking either the spin-rotational
or the time-reversal symmetries induces a shift of the
mobility edge which is a power law with exponent equal to
1=ð2νorthÞ, νorth being the critical exponent in the orthogo-
nal class. In our 2D case, νorth → þ∞, so Ec cannot diverge
as a power law of jλR − λDj. The divergence is probably
logarithmic, but proving it requires further numerical
and/or analytical work.
In conclusion, we have shown that atoms with artificial

Rashba and Dresselhaus SOC exposed to a 2D speckle
potential undergo an Anderson transition belonging to the
symplectic universality class. We have computed the
precise position of the mobility edge and identified a
regime (Fig. 2) where the latter scales linearly as a function
of the disorder strength, with a slope changing sign as the
SOC increases. Importantly, we have unveiled (Fig. 3) that
the mobility edge exhibits a non-power-law divergence at
the spin-helix point, reflecting the crossover to the orthogo-
nal class. Our results call for the extension of Wegner’s
theory [50] to pure 2D systems, which by itself is a novel
and interesting theoretical challenge.
Our predictions can already be tested experimentally

using ultracold atoms with tunable synthetic SOC. Finally,
we mention that the numerical approach developed here is
completely general and can be applied to any kind of
random potential, including short range [52].

We thank D. Delande and V. Josse for useful discussions.
We also thank K. Slevin and T. Ohtsuki for correspondence
and for drawing our attention to Refs. [50,51]. This
work was granted access to the HPC resources of TGCC
under the allocations 2015-057301 and 2016-057629
made by GENCI (Grand Equipement National de Calcul
Intensif).

0 0.5 1 1.5
mixing angle

-0.2

0

E
c/E

σ

 π/4

FIG. 3. Mobility edge as a function of the mixing angle
θ ¼ arctanðλD=λRÞ between Rashba and Dresselhaus SOC, for
a fixed value of the total strength

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2R þ λ2D

p
mσ ¼ 0.5 and

disorder amplitude V0 ¼ Eσ . Approaching θ ¼ π=4 (vertical
dashed line), corresponding to equal strengths of Rashba and
Dresselhaus SOC, the mobility edge rises sharply and actually
diverges. Indeed, at this special point, spin scattering is absent
and the model falls into the orthogonal universality class, for
which all states are localized in two dimensions, implying
Ec ¼ þ∞. Notice that the mobility edge Ec is invariant under
the transformation θ → π=2 − θ exchanging the Rashba and
Dresselhaus terms in Eq. (1).
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