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In the complex 3D magnetic fields of stellarators, ion-temperature-gradient turbulence is shown to have
two distinct saturation regimes, as revealed by petascale numerical simulations and explained by a simple
turbulence theory. The first regime is marked by strong zonal flows and matches previous observations in
tokamaks. The newly observed second regime, in contrast, exhibits small-scale quasi-two-dimensional
turbulence, negligible zonal flows, and, surprisingly, a weaker heat flux scaling. Our findings suggest that
key details of the magnetic geometry control turbulence in stellarators.
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Introduction.—The success of magnetic confinement
fusion experiments depends on controlling heat loss from
the plasma contained within them. In the case of optimized
stellarators, particularly at the outer radial locations of the
plasma, this loss is thought to be mainly caused by
transport due to microturbulence, which exists on scales
much smaller than the device size. A thorough under-
standing of the fundamental nature of the turbulence is thus
strongly desired. First and foremost, it would be invaluable
to identify generic turbulence scaling laws, which can
arise from nonlinear saturation processes that are common
between different devices. Indeed, this could greatly
facilitate the understanding and interpretation of observa-
tions from experiments and numerical simulations, espe-
cially when exploring new devices or parameter regimes.
However, given the variety and inherent complexity [1]

of stellarators, it is reasonable to ask whether such laws
could be expected to apply. At first glance, the prospect
may already seem unrealistic in the simpler context of
the tokamak. That is, although dimensional analysis theo-
retically constrains transport fluxes to follow gyro-Bohm
scaling [2], these fluxes depend, in principle, on a host of
dimensionless system parameters, including ratios derived
from all the characteristic macroscopic scales. Furthermore,
in topologically toroidal magnetic geometry, there is no
single scale corresponding to the continuous spatial
dependence of the magnetic field, and thus it seems
necessary to include detailed geometric information in
any theory that hopes to predict the properties of the
turbulence.
Despite these apparent challenges, certain generic scal-

ing law behavior in the properties of ion-temperature-
gradient (ITG) turbulence was indeed observed in tokamak
simulations by Barnes, Parra, and Schekochihin [3]. These
laws involved only a small number of characteristic scales,
and the magnetic geometry, in particular, was reduced
to a single scale, the parallel connection length L∥, which
limits the size of turbulence in the direction parallel to the
magnetic guide field.

In this Letter, we present a theoretical study of the
turbulence found in two different optimized stellarators,
Wendelstein 7-X (W7-X) [4] (high-mirror vacuum con-
figuration) and the Helically Symmetric Experiment (HSX)
[5], as compared with that of a conventional circular
tokamak. We find qualitatively similar properties in
W7-X and the tokamak but discover a new regime of
ITG turbulence in HSX. Remarkably, this turbulence does
not involve significant zonal flow (ZF) activity (flows that
regulate turbulence in tokamaks), away from the threshold
of turbulence onset. This allows for the uninhibited growth
of small-scale quasi-two-dimensional vortices, resulting
in a weaker scaling law for the heat flux and a steeper
fluctuation spectrum.
Beyond addressing the role of zonal flows in stellarators,

these observations broaden the notion of generic ITG
turbulence in magnetic fusion plasmas, by demonstrating
the possibility of a two-dimensional character to the
turbulence, in a fundamentally three-dimensional magnetic
field; the competition between two- and three-dimensional
dynamics is a theme that spans the field of magnetized
plasma turbulence.
Ostensibly, the W7-X and HSX stellarators have similar

characteristics related to ITG turbulence: They have,
respectively, large aspect ratios of 11 and 8, toroidal field
periods of 5 and 4, and small negative values of global
magnetic shear. Thus, the dimensionless parameters
for the ITG mode, derived from local characteristic scales,
such as the parallel connection length L∥ and the ion-
temperature-gradient length LT , should be comparable.
A closer inspection of the magnetic geometry, however,
reveals key differences in surface compression and local
magnetic shear [6], which measures how much neighboring
field lines locally diverge from each other, along field line
trajectories (the surface average of the local shear equals
the global shear mentioned above). We argue that these
features, characteristic of stellarators, due to their “twisted”
shape, affect the nonlinear stability of ZFs and thus
determine which turbulence regime is accessible.
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Actually, previous numerical evidence suggests that
stellarators generally do not rely so strongly on ZFs for
saturation, in the sense that the artificial suppression of ZFs
causes a relatively modest overall effect on the turbulence
as compared with tokamaks [7]. We can attribute this
phenomenon to the strengthening of local secondary modes
that feed on the unstable parallel ion flows present in
localized turbulence, and we will invoke these modes to
explain the new regime of turbulence observed in HSX.
Simulations.—We simulate stellarator turbulence using

the gyrokinetic code GENE [8–10]. For simplicity, we
assume electrons to be Boltzmann distributed (with the
standard subtraction of the flux-surface-averaged compo-
nent), as we focus on electrostatic ITG-driven turbulence.
We use a flux-tube computational domain [11], which
is a thin box surrounding a selected magnetic field line for
one poloidal turn (the short way) around the torus. This
simplification is advantageous here, as it allows for a direct
comparison with our theory, which does not include global
effects. The investigation is limited to a single field line,
which in both stellarators passes through the outboard
midplane where the cross section is bean shaped.
In all three devices, we observe a Dimits shift associated

with stable ZFs at the weakest temperature gradients, close
to the threshold of turbulence onset. Above the threshold,
W7-X has sharply rising transport, matching the theoretical
scaling Q ∼ n0T0vTρ2L∥=L3

T , known to be satisfied
in tokamaks [3] (see Fig. 1); here n0 and T0 are the
background ion density and temperature, respectively,
L−1
T ¼ −ð1=T0ÞdT0=dr, r is the radial coordinate, vT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0=mi

p
is the ion thermal speed, mi is the ion mass, and

ρ is the ion gyroradius. The turbulence has a characteristic
outer scale that depends on the temperature gradient,
lo
y ¼ 1=koy ∝ L−1

T , as shown in Fig. 2. Such scaling was
observed by Barnes, Parra, and Schekochihin [3], who

associated it with the “critical balance” concept; it is also a
feature of the slab branch of the ITG mode, since the
maximum growth rate is obtained in the resonant limit
k∥vT ∼ kyρvT=LT of the local dispersion relation [12]. The
fluctuation spectra in these two cases matches previous
observations [3], as shown in Fig. 3.
In the case of HSX, however, all of the above measures

have different behavior. The scaling for Q is weaker, as is
the scaling for lo

y, whereas the fluctuation spectrum turns
out to be steeper, following a power law with an exponent
of −10=3. The scaling of lo

y is a clue that the smaller-scale
toroidal branch of the ITG mode drives turbulence in HSX.
Indeed, using the local dispersion relation in the strongly
driven limit, the characteristic scale of the toroidal mode
may be obtained by balancing the toroidal (magnetic drift)
drive with the slab (parallel Landau) drive, i.e., by setting
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FIG. 1. Ion heat flux scaling (in gyro-Bohm units) as a function
of the ion-temperature gradient (normalized to the minor radius),
compared with theoretical power laws.
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the pure toroidal and slab growth rates [12,13] equal,
ðk2∥v2TkyρvT=LTÞ1=3 ∼ kyρvT=

ffiffiffiffiffiffiffiffiffiffiffi
RcLT

p
, where Rc denotes

the radius of curvature of the magnetic field. Setting
the parallel wave number according to the geometry-
dependent connection length, k∥ ∼ 1=L∥, we then obtain

kyρ ∼ L1=4
T R3=4=L∥. This ky is the smallest wave number

where the toroidal mode can be found, and its dependence
on the temperature gradient matches that shown in Fig. 2.
Note that this derivation assumes k∥vT ≪ γ; i.e., the
parallel dynamics is so slow that the modes may be
considered as “quasi-two-dimensional.” This is also a
key distinction with tokamak-type turbulence, driven by
the strongly resonant slab mode, which is fully three
dimensional.
The above features exhibited by W7-X and the tokamak

are associated with the presence of strong ZFs [14], and so
it is reasonable to ask whether the difference compared to
HSX can be attributed to a difference in ZF activity. To gain
some insight into this question, numerical experiments can
be performed where the zonal E × B flow is artificially set
to zero at each time step of the simulation. In the case of
the tokamak, this suppression can result in an increase in
transport by 2 orders of magnitude or even a failure to
saturate altogether. However, for the stellarator devices, the
effect is far less dramatic. Our results show that W7-X
has relatively modest change in transport, whereas HSX
exhibits no discernible change to the transport level in the
final turbulent state.
Zonal flow generation.—What causes the strong

differences between W7-X and HSX? Let us first examine
the nonlinear ZF drive. We can estimate ZF growth using
secondary instability theory. To properly account for
magnetic geometry, we use magnetic flux coordinates ψ
and α such that B0 ¼ ∇ψ × ∇α. Denoting the zonal
wave number ksψ , assuming k2⊥ρ2i ≪ 1, and neglecting
perpendicular temperature fluctuations and parallel ion
motion, the zonal (secondary) growth rate γz can be
expressed in terms of the primary (ITG) mode amplitude
ϕ̂p and wave number kpα as [15]

γz ¼ jkpαksψ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hbψi−1ψ hbψ jϕ̂pj2iψ

q
; ð1Þ

where bψ ¼ ðρksψ j∇ψ jÞ2 and hiψ denotes the flux surface
average. Thus, γz is roughly proportional to the root-mean-
squared value of the amplitude ϕ̂p on a flux surface. To get
a sense of how geometry affects ZF growth, we can
compare the global result [Eq. (1)] with what would be
obtained from a local theory, at the point where jϕ̂pj is
maximum. The ratio of the two can be estimated as
γz=½kpαksψ maxðjϕ̂pjÞ� ∼ σ, where

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjϕ̂pj2iψ

q
=maxðjϕ̂pjÞ; ð2Þ

with max denoting the maximum value on the flux surface.
This implies that localized modes (those with small σ) are
less effective at driving ZFs than modes that extend across a
flux surface. We note that the quantity σ, as measured in our
simulations, is insensitive to the temperature gradient,
implying that it is geometry determined.
Turbulence in W7-X is known to be strongly localized

[16], and indeed we find σ ¼ 0.23 when it is measured in
the nonlinear state at the outer-scale wave number koy,
whereas the value measured in the HSX stellarator is
σ ¼ 0.43, implying a stronger nonlinear drive for ZFs
(for comparison, the localization parameter in the tokamak
is σ ¼ 0.92). This fact is at odds with the apparent
insignificance of ZFs in the final turbulent state.
However, ZFs are transiently important in the simulations,
as evidenced by the appearance of a large burst of heat
flux that occurs initially in the simulations where the flows
are artificially suppressed. This seems to indicate that
the nonlinear drive mechanism is indeed strong but that
strong damping subsequently arises.
Zonal flow decay.—We are thus motivated to consider

the ZF decay mechanisms, which here include linear
collisionless damping (geodesic transfer [17]), and non-
linear mechanisms such as the tertiary instability [18] (we
do not include collisions). To evaluate the importance of
geodesic transfer, we perform a series of numerical experi-
ments, with the strength of geodesic curvature artificially
modulated. We find that W7-X is quite sensitive to this
procedure, as was previously found [19], while HSX and
the tokamak are not. We note that the transport model of
Ref. [20], which estimates ZF damping using the linear
response, might therefore be appropriate for W7-X. In
HSX, however, it seems that ZFs decay by a nonlinear
mechanism, e.g., the tertiary instability. A fully three-
dimensional theory of the tertiary instability is not ana-
lytically tractable, but local theory offers some insight. As
ZF shearing is strongly stabilizing, the tertiary mode is
localized to regions of minimal E × B shearing and driven
by the zonal perpendicular temperature. The important
observation is that this mode depends on finite Larmor
radius terms, which are sensitive to magnetic geometry. To
express its growth rate, let us denote the electrostatic
potential and perpendicular temperature component of the
zonal mode as ϕzðψÞ and χzðψÞ, respectively, where
χ¼ðqn0Þ−1

R
d3vðmv⊥2=4Þδf. The tertiary mode, denoted

(ϕt, χt), is assumed proportional to expð−iωttþ iktααÞ and
solved for using gyrokinetic theory, at a fixed location
(e.g., defined by the toroidal and poloidal angles) on a flux
surface ψ0, where ϕ00

z ðψ0Þ ¼ 0. The result is

ωt ¼ ωE þ ωχbα
2τ

� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ω2
χb2α
4τ2

þ γ̄2t

s
; ð3Þ

where γ̄t ¼ ½2ðρj∇ψ jktαÞ2ϕ000
z χ

0
z=τ�1=2, ωE ¼ ktαϕ0

z is the
Doppler shift due to the local zonal E × B velocity,
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ωχ ¼ ktαχ0z is the perturbed diamagnetic frequency,
bα ¼ ðρj∇αjktαÞ2, and τ is the background ion to electron
temperature ratio. The quantity inside the radical, which
determines the instability growth rate, depends on magnetic
geometry in a subtle way. To obtain a more transparent
form, we can maximize the growth rate over the free
parameter ktα and make some simple estimates for the other
quantities that appear. Let us assume that ϕz ∼ χz and that
the scale of the zonal mode is comparable to that of the
turbulence, so ϕ000

z ∼ ϕ0
zðlo

y=j∇ψ jrefÞ2, where the subscript
“ref” denotes the reference value measured at the location
of peak turbulence intensity. The zonal flow amplitude ϕz

0
may be estimated by the usual balance between the ITG
mode growth rate and the zonal shearing rate, ϕ0

zkα ∼ γL;
thus, ϕ0

z ∼ j∇αjrefρvT=L, where we could take L ¼ LT or
L ¼ ffiffiffiffiffiffiffiffiffiffiffi

LTRc
p

, depending on the drive mechanism. These
estimates yield a maximum tertiary growth rate
maxðIm½ωt�Þ ∼Gtðρ=lo

yÞ3=2vT=L, where Gt is a geometric
factor, expressed as

Gt ¼
j∇ψ j3=2
j∇ψ j3=2ref

j∇αjref
j∇αj : ð4Þ

This factor, which reflects both flux surface compression
and local magnetic shear, acts by “squeezing” the tertiary
mode, i.e., limiting its spatial extent, and stabilizing it via
the parallel ion Landau resonance. As shown in Fig. 4, the
effect is more pronounced in W7-X than HSX, in that
the envelope of Gt is narrower. This implies a more stable
tertiary mode for W7-X, leading to the observed persistence
of ZFs in the system.
Saturation of toroidal ITG modes.—As the turbulence

observed for HSX is not sensitive to the presence of ZFs,
the saturation of ITG modes must be mostly due to eddy-
eddy (local) interactions. We identify the modes driving
this turbulence as toroidal ITG modes, due to their small
scale and also by the fact that the temperature component

grows more strongly than the density component, which is
not the case for the resonant slab ITG mode, driving
turbulence at large scales. In the tokamak, these toroidal
modes grow to extremely large amplitudes in simulations
where ZFs are artificially suppressed. This behavior has
been attributed to the weak variation of the toroidal ITG
mode along the field line and the resulting weak parallel ion
flow, which makes the mode inherently stable nonlinearly
[21]. The localization of modes by local magnetic shear
seems to make stellarators immune to this problem,
presumably because local interactions are sufficiently
strong to bring about saturation.
Following the above considerations, we propose a

model to describe the saturation of toroidal ITG modes
by the parallel-ion-flow instability [22]. Let us estimate the
linear growth rate of the toroidal ITG mode [13] by the
(strongly driven) fluid result γL ∼ ρvT=ðl

ffiffiffiffiffiffiffiffiffiffiffi
RcLT

p Þ, where
l ∼ 1=k⊥ indicates the perpendicular scale. We then
estimate the nonlinear decay rate (inverse turnover time)
as ωNL ∼ γs ∼ δu∥ρ=l2, where the parallel ion flow
can be expressed as δu∥ ∼ ðqϕ=TÞvTðω∥=γLÞ, assuming
ω∥ ¼ vT=L∥ < γL. Then the saturation amplitude ϕl may
be obtained via γL ∼ ωNL. The nonresonant limit gives
also the estimates of the outer scale lo

y ∼ ρL∥=ðR3=4
c L1=4

T Þ
and the ratio δT ∼ qϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rc=LT

p
, which, combined with

the saturation amplitude, can be used to evaluate
Q ∼ σn0ϕloyδTloy =ðB0lo

yÞ as

Q
QGB

∼ L∥σ
R5=4
c

L9=4
T

; ð5Þ

where QGB ¼ n0T0vTðρ=RcÞ2. This theoretical prediction
compares well with the simulations (see Fig. 1). Note
the strong dependence on geometry via the factor σL∥. In
fact, σ sets a geometrical limit on L∥, since the parallel
correlation length cannot exceed the envelope of the
turbulence intensity, and thus an overall lower transport
could be expected in configurations with more localized
turbulence.
Conclusions.—Using petascale numerical simulations

and analytical theory, we have investigated two distinct
plasma ITG turbulence regimes in stellarators, with differ-
ent scaling laws (for the turbulent outer scale and transport),
physical drives, and saturation mechanisms. The first
regime, represented by W7-X, resembles tokamak turbu-
lence, in which ZFs play an essential role in saturation, and
the slab mode prevails as the drive mechanism. In the
second, newly found turbulence regime, represented by
HSX, ZFs display a minor effect on transport.
This stellarator-specific regime is theoretically explained

with a model describing the saturation of small-scale
toroidal ITGmodes by a local secondary instability, leading
to a weaker turbulence scaling. Our work highlights the
critical role of magnetic geometry in controlling the
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FIG. 4. Tertiary geometric factor Gt versus the position along
the field line, as measured by the poloidal angle θ.
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turbulence properties, in particular, via the affect of local
magnetic shear and flux surface compression on turbulence
localization and nonlinear ZF stability. Stellarator configu-
rations favoring strong turbulence localization, like W7-X,
are thus predicted to enjoy more stable ZFs compared to
configurations with less localized turbulence. Nevertheless,
we showed that, even in the absence of ZFs, the 3D
localization appears sufficient, in contrast to the case in
tokamaks, to limit the amplitude of linear ITG modes,
making “zonal-flow-free” saturation possible for stellarator
turbulence.

The GENE simulations were performed on the Hydra
(Germany) and Marconi (Italy) supercomputers.
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