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We show that a homogeneous and isotropic slab, illuminated by a circularly polarized beam with no
topological charge, produces vortices of order 2 in the opposite circularly polarized components of the
reflected and transmitted fields, as a consequence of the transverse magnetic and transverse electric
asymmetric response of the rotationally invariant system. In addition, in the epsilon-near-zero regime, we
find that vortex generation is remarkably efficient in subwavelength thick slabs up to the paraxial regime.
This physically stems from the fact that a vacuum paraxial field can excite a nonparaxial field inside an
epsilon-near-zero slab since it hosts slowly varying fields over physically large portions of the bulk. Our
theoretical predictions indicate that epsilon-near-zero media hold great potential as nanophotonic elements
for manipulating the angular momentum of the radiation, since they are available without resorting to
complicated micro- or nanofabrication processes and can operate even at very small (ultraviolet)
wavelengths.
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Spin-orbit interaction (SOI) of light is a very important
research topic since it provides a tool for manipulating the
spatial degrees of freedom of the radiation by acting on its
circular polarization state [1,2]. A remarkable SOI effect is
the generation of optical vortices from circularly polarized
beams, a process accompanied by spin to orbital angular
momentum conversion. Standard procedures to achieve
vortex generation are focusing by high-numerical aperture
lenses [3,4], scattering by small particles [4], propagation
along the optical axis of a homogeneous uniaxial crystal
[5,6], interaction with inhomogeneous anisotropic media
[7], and propagation through semiconductor microcavities
[8]. Similar SOI effects involving Bessel beams have been
considered in uniaxial crystals [9] and at reflection and
transmission by a planar interface between two homo-
geneous media [10]. Optical vortex beams have a lot of
potential applications such as trapping of particles [11],
propagation through atmospheric turbulence [12] and
optical communications [13]. The advent of metamaterials
has further increased the SOI research effort [14], mostly in
the use of ultrathin metasurfaces for manipulating the
angular momentum of light [15,16] and for vortex gen-
eration [17,18]. Epsilon-near-zero (ENZ) media are nowa-
days attracting an increasing research interest due to the
very unconventional way they affect the electromagnetic
radiation. The effective wavelength in ENZ media is much
larger than the vacuum wavelength and this entails a regime
quite opposite to geometrical optics where the field is
slowly varying over relatively large portions of the bulk.
Such a feature has been exploited for squeezing electro-
magnetic waves at will [19], tailoring the antenna radiation
pattern [20], and enhancing the nonlinear response of
matter [21–25]. In the context of light SOI, it has recently

been proposed that a thin epsilon-near-zero slab can
enhance the spin Hall effect of transmitted light [26].
In this Letter we show that a homogeneous, isotropic

and ultrathin (subwavelength thick) slab can support vortex
generation. We prove that such a genuine SOI effect is
physically due to the mutual difference between the
dynamics of transverse magnetic (TM) and transverse
electric (TE) fields upon reflection and transmission. As
the majority of radiation SOI phenomena, the slab vortex
generation is mainly a nonparaxial effect. On the other
hand, we prove that slab vortex generation in the ENZ
regime is remarkably efficient even for incident paraxial
beams in spite of the very small slab thickness. Such
phenomenology is unprecedent since, to the best of our
knowledge, paraxial vortex generation in homogenous
media (i.e., through lenses and uniaxial crystals) requires
samples whose thickness is much larger than wavelength.
Here, the crucial role is played by the physical ability of an
ENZ slab to turn a paraxial wave, incoming from vacuum,
into a nonparaxial one within the bulk, its nonparaxiality
triggering the predicted slab vortex generation. The vortex
generation method prosed in this Letter can have important
nanophotonic applications since, unlike the one based on
metasurfaces, it does not require microfabrication (the ENZ
slab is homogenous) and it is scalable down to very small
wavelengths (exploiting the ultraviolet ENZ point of
metals) where metamaterials are not available. It is also
worth noting that our method, unlike the one based on
inhomogeneous anisotropic media (q plates), is based on
a very simple setup that requires neither preparation nor
external biasing by electric field; it operates in subwave-
length thick slabs and it can be used even up to the
ultraviolet frequencies.
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Let us consider the scattering of a monochromatic
[∼ expð−iωtÞ] electromagnetic field by a homogeneous
and isotropic slab of thickness L and dielectric permittivity
ε (see Fig. 1). We choose the z axis to be along the slab
normal. The angular spectrum representations of both the
incident (i) and transmitted (t) fields are (q ¼ i, t)

EðqÞ ¼
Z

d2k⊥eik⊥·r⊥þikðVÞz z½VTMU
ðqÞ
TM þ VTEU

ðqÞ
TE �; ð1Þ

where r⊥ ¼ xêx þ yêy and k⊥ ¼ kxêx þ kyêy are the trans-

verse position and wave vector, respectively, kðVÞz ðk⊥Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2⊥

p
is the longitudinal vacuum wave vector

(k0 ¼ ω=c), VTM ¼ ðkxêx þ kyêy=k⊥Þ − ðk⊥êz=kðVÞz Þ and
VTE ¼ ð−kyêx þ kxêy=k⊥Þ are the TM and TE polarization

vectors, andUðqÞ
TMðk⊥Þ andUðqÞ

TEðk⊥Þ are their corresponding
amplitudes. The slab differently transmits TM and TE fields

according to UðtÞ
TM ¼ tTMðk⊥ÞUðiÞ

TM and UðtÞ
TE ¼ tTEðk⊥ÞUðiÞ

TE

where the complex transmissivities are tTM ¼
½cosðkðSÞz LÞ− i

2
½ðεkðVÞz =kðSÞz ÞþðkðSÞz =εkðVÞz Þ�sinðkðSÞz LÞ�−1 and

tTE¼½cosðkðSÞz LÞ− i
2
½ðkðVÞz =kðSÞz ÞþðkðSÞz =kðVÞz Þ�sinðkðSÞz LÞ�−1,

where kðSÞz ðk⊥Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20ε − k2⊥

p
is the longitudinal wave

vector inside the slab. We now choose, as a basis for the
transverse plane, theLHCandRHCpolarization unit vectors,
êL ¼ ð1= ffiffiffi

2
p Þðêx þ iêyÞ and êR ¼ ð1= ffiffiffi

2
p Þðêx − iêyÞ,

respectively, and we introduce polar coordinates,
x ¼ r⊥ cosφ, y ¼ r⊥ sinφ, kx ¼ k⊥ cos θ, ky ¼ k⊥ sin θ,
for both transverse position and wave vector. Accordingly,
the transverse component of Eq. (1) becomes

EðqÞ
⊥ ¼

Z þ∞

0

dk⊥k⊥
Z

2π

0

dθeik⊥r⊥ cosðθ−φÞþikðVÞz z

×

�
e−iθ

�
UðqÞ

TM − iUðqÞ
TEffiffiffi

2
p

�
êL þ eiθ

�
UðqÞ

TMþ iUðqÞ
TEffiffiffi

2
p

�
êR

�
:

ð2Þ

We consider an incident beam that is LHC polarized
(carrying spin angular momentum) and that has no topo-
logical charge (i.e., not carrying orbital angular momentum).
From Eq. (2), it follows that its TM and TE spectral

amplitudes have to satisfy the constraint UðiÞ
TE ¼ iUðiÞ

TM that,
together with the zero-topological charge condition, implies

that UðiÞ
TM ¼ eiθUðiÞðk⊥Þ and UðiÞ

TE ¼ ieiθUðiÞðk⊥Þ, where
UðiÞ is an arbitrary rotationally invariant spectrum. As a
matter of fact, Eq. (2) with q ¼ i, after performing the
angular integration, yields

EðiÞ
⊥ ¼ 2π

Z þ∞

0

dk⊥k⊥eik
ðVÞ
z z½

ffiffiffi
2

p
J0ðk⊥r⊥ÞêL�UðiÞ; ð3Þ

where JnðξÞ is the Bessel function of the first kind of order n.
The TM and TE components of the field transmitted by the

slab are therefore UðtÞ
TM ¼ tTMeiθUðiÞ andUðtÞ

TE ¼ tTEieiθUðiÞ
and accordingly Eq. (2) with q ¼ t, after performing the
angular integration, yields

EðtÞ ¼ 2π

Z þ∞

0

dk⊥k⊥eik
ðVÞ
z z

��
tTM þ tTEffiffiffi

2
p

�
J0ðk⊥r⊥ÞêL

− ei2φ
�
tTM − tTEffiffiffi

2
p

�
J2ðk⊥r⊥ÞêR

�
UðiÞ: ð4Þ

Equation (4) reveals that the RHC component of the
transmitted field, due to the factor ei2φ, contains a second-
order vortex (i.e., its topological charge is equal to 2),
whereas the LHC component has no topological charge as
the incident field. Evidently the reflected beam has the
same polarization and vortex structure. The geometry of the
incident, reflected, and transmitted fields is sketched in
Fig. 1. In addition, Eq. (4) clearly shows that the generation
of the transmitted RHC field (containing the vortex) is a
consequence of condition tTM ≠ tTE, i.e., of the different
behavior of TM and TE fields upon slab transmission.
Physically this is due to the fact that the TM and TE
spectral amplitudes of the incident LHC polarized field are

related by the constraint UðiÞ
TE ¼ iUðiÞ

TM that, due to the
different slab effect on TM and TE fields, is not transferred
to the transmitted field, which accordingly is not LHC
polarized. A fundamental role in the considered vortex
generation process is played by the factors e−iθ and eiθ of
Eq. (2). As a matter of fact the topological charge factor
ei2φ appears (after the integration on θ) since the eiθ factor
is literally carried from the spectral amplitude of the
incident field eiθUðiÞ to the RHC component of the trans-
mitted one, where it is multiplied by the further polarization
factor eiθ.
To investigate the vortex generation process in more

detail, we consider slabs of permittivity ε ¼ Re εþ 0.003i

L
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LHC
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RHCReflected
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z

x

y

FIG. 1. Geometry of the vortex generation process. The
incident beam is left-handed circular (LHC) polarized with
no topological charge. Both the reflected and the transmitted
beams have a LHC component with no topological charge and a
right-handed circular (RHC) component containing a second-
order vortex. (The beams in the figure are spatially separated for
clarity purposes).
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and subwavelength thickness L ¼ 1
2
λ (λ ¼ ð2πc=ωÞ is the

vacuum wavelength) and we focus on the absolute value of
the difference between the TM and TE transmissivities,
Δ ¼ jtTM − tTEj. This is the key spectral parameter ruling
vortex generation in the transmitted RHC component of
Eq. (4). In Fig. 2(a) we plot Δ as a function of the real part
of the slab permittivity and of the transverse wave vector k⊥
(normalized to the vacuum wave number k0) spanning the
vacuum homogeneous spectrum (k⊥ < k0). For standard
materials, Re ε > 1, Δ is rather small except for k⊥ close to
k0. This is consistent with the general nonparaxial trait of
SOI optical effects [2]. For materials characterized by the
condition jRe εj < 1 the situation is remarkably different in
that Δ has a marked lobe, localized at the middle of the
vacuum homogeneous spectrum, whose left tail encom-
passes very small transverse wave vectors k⊥ ≪ k0 around
Re ε ¼ 0. This proves that vortex generation in ENZ
subwavelength thick slabs can efficiently be observed even
in the paraxial regime, the smaller the Re ε the more
paraxial the field. To physically grasp the mechanism
supporting paraxial vortex generation in ENZ slabs, in
Fig. 2(a) we have also plotted the curve k⊥ ¼ k0

ffiffiffiffiffiffiffiffiffi
Re ε

p
(white dashed line), which is found to locate the largest

values ofΔ on the lobe. Since jkðSÞz j¼k0f½Reε−ðk2⊥=k20Þ�2þ
ðImεÞ2g1=4, it is evident that the longitudinal wave
vector within the slab attains its minimum absolute value

jkðSÞz jmin ¼ k0
ffiffiffiffiffiffiffiffiffi
Im ε

p
at all points of the curve. Therefore,

vortex generation is efficient in the paraxial regime since, if
0 < Re ε < 1, there is a narrow bundle of vacuum paraxial
waves whose k⊥ is smaller than and close to k0

ffiffiffiffiffiffiffiffiffi
Re ε

p
and

they excite highly nonparaxial waves within the slab, their
wave vector being almost orthogonal to the z axis. In
Fig. 2(b) we have sketched a wave vector diagram showing
the excitation of nonparaxial waves in the ENZ slab by
paraxial vacuum waves in the ideal Im ε ¼ 0 situation. It is

evident that the smaller the value jkðSÞz jmin ¼ k0
ffiffiffiffiffiffiffiffiffi
Im ε

p
the

more nonparaxial the waves are within the slab so that the
full ENZ condition jεj ≪ 1 has to be met to achieve
efficient vortex generation. The imaginary part of ε, due
to the slab losses, also plays an important role as combined
to the slab thickness L. In Fig. 3 we plot the vortex spectral
amplitude Δ as a function of the slab thickness L
(normalized to the vacuum wavelength λ) and of the
transverse wave vector k⊥ (normalized to the vacuum wave
number k0) spanning the vacuum homogeneous spectrum
(k⊥ < k0), for three different slabs with permittivities
(a) ε ¼ 0.001, (b) ε ¼ 0.001þ 0.003i, and (c) ε ¼
0.001þ 0.03i. In the first (ideal) case paraxial vortex
generation around ~k⊥ ¼ k0

ffiffiffiffiffiffiffiffiffi
Re ϵ

p ≃ 0.031k0 (labeled with
the vertical white dashed line) is persistent even for L
greater than λ. This is due to the fact that in this case, we
have tTMð~k⊥Þ ¼ ð1 − ði=2Þε ffiffiffiffiffiffiffiffiffiffi

1 − ε
p

k0LÞ−1 and tTEð~k⊥Þ ¼
ð1 − ði=2Þ ffiffiffiffiffiffiffiffiffiffi

1 − ε
p

k0LÞ−1 so that, since ε ≪ 1, the TM
transmissivity is slowly varying with L and very close to
1, whereas the TE transmissivity quickly decreases as L
increases thus producing a large value ofΔ. In the other two
cases [see Figs. 3(b) and 3(c)], the imaginary part is larger
and its detrimental effect on vortex generation is evident
since Δ fades as the slab thickness L increases. This is a
consequence of the fact that absorption in the ENZ regime
is generally not negligible even if Imε is rather small.
However, if the slab has subwavelength thickness, vortex
generation persists even up to the paraxial regime.
In order to discuss the vortex generation process in

realistic and feasible situations, we consider subwavelength
thick slabs whose dielectric dispersive response is
described by the Drude model ε ¼ ε∞ − ðω2

p=ω2 þ iγωÞ,
where ε∞ is the high-frequency permittivity, γ is the
damping rate, and ωp is the free-electron plasma frequency.
Such materials have a zero crossing point Re ε ¼ 0 at the
vacuum wavelength λ0. For simplicity we consider imping-
ing LHC polarized Bessel beams of radius w, without
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topological charge, which are scattered by the slab to
produce transmitted RHC Bessel beams of the same
radius and carrying topological charge 2. The efficiency
of the vortex generation process is ηLR ¼ 1

4
jtTEð2π=wÞ −

tTMð2π=wÞj2 (see Supplemental Material [27]).
In the first example we consider an indium tin oxide

(ITO) slab of thickness L ¼ 0.4 μm whose Drude param-
eters are ϵ∞ ¼ 3.8055, ωp ¼ 2.9719 × 1015 Hz, and γ ¼
0.0468ωp [24], for which λ0 ¼ 1.24 μm and Im½εðλ0Þ� ¼
0.347. In Fig. 4(a) we plot the real and imaginary parts of
ITO permittivity in the infrared spectral band 1 μm < λ <
1.6 μm and we have shadowed the spectral region
jRe εj < 1 where, from the above discussion, vortex gen-
eration is expected to occur even in the paraxial regime.
In Fig. 4(b) we plot the Bessel vortex generation efficiency
ηLR as a function of the vacuum wavelength λ ¼ 2πc=ω
and the beam width w. In the nonparaxial regime, w≃ λ,
ηLR is sensibly different from 0 at least for wavelengths
smaller than λ0. This is the above-discussed vortex gen-
eration for nonparaxial fields occurring in dielectric slabs
[since Re ε > 0 for λ > λ0; see Fig. 4(a)]. In the paraxial
regime w > λ, ηLR is very small except for a region
surrounding the wavelength λ0 where ηLR fades as w
increases. This shows that vortex generation is effectively
operated by the considered ITO slab in the paraxial regime
only for wavelength close to the ENZ crossing point. In
Fig. 4(c) we plot ηLR at λ0 as a function of the slab thickness
L and the beam width w. Note that the vortex generation
efficiency in this example is rather small as a consequence
of the large imaginary part of ε at λ0, which prevents the full
ENZ condition jεj ≪ 1 being fulfilled. In addition, the large
slab losses restrict vortex generation to very thin slabs
L≲ 0.3 μm≃ 1

4
λ0. In the second example we consider a

Na slab of thickness L ¼ 100 nm whose Drude parameters

are ϵ∞ ¼ 1,ωp ¼ 8.2 × 1015 Hz, and γ ¼ 0.003ωp [28], for
which λ0 ¼ 222 nm and Im½εðλ0Þ� ¼ 0.003. In Figs. 5(a)
and 5(b) we focus on the ultraviolet spectral band 200 nm <
λ < 245 nm and, in analogy with Fig. 4, we plot the
permittivity and vortex generation efficiency of the consid-
ered Na slab. This example shows all the above discussed
features of slab vortex generation but its efficiency is larger
than in the first example. In Fig. 5(c) we plot ηLR at λ0 as a
function of the slab thicknessL and the beamwidthw and, as
compared with Fig. 4(c), it reveals both the larger vortex
generation efficiency and the persistence of the phenomenon
up to very wide paraxial fields (where w≃ 18λ0 for
w ¼ 4000 nm). This is due to the small imaginary part of
ε at λ0, which allows the Na slab to host the genuine ENZ
regime jεj ≪ 1 close to λ0. The large impact of losses in the
ENZ regime restricts vortex generation to subwavelength
slabs of thickness L≲ 100 nm≃ 1

2
λ0. The two considered

examples reveal that the proposed vortex generation mecha-
nism can easily be spectrally tuned from infrared to ultra-
violet wavelengths. We envisage that such tunability can be
extended to the visible rangewhere homogeneous plasmonic
materials (e.g., transition metal nitrides such as TiN, ZrN,
HfN, etc. [29,30]) having a crossing point of the permittivity
at optical frequencies are currently the subject of intense
research activity.
In conclusion we have shown that a subwavelength thick

slab supports efficient vortex generation of nonparaxial
fields. We believe that the identified vortex generation
mechanism based on TE/TM asymmetry further increases
the understanding of SOI of light. If the slab is in the ENZ
regime, its ability to convert spin into angular orbital
momentum extends to the paraxial regime. This is a
remarkable effect in view of the homogeneity of the slab
and its extremely small thickness, which is made possible
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by the conversion of a paraxial field into a nonparaxial one
operated by the ENZ slab. As compared to standard vortex
generation techniques based on metasurfaces, our method
is based on a very simple setup, the homogenous ENZ slab,
which does not require microfabrication. In addition our
scheme can be exploited even for very small ultraviolet
wavelengths where metamaterials are unavailable and
metals have their plasma frequency. Our results pave the
way for a cost-effective platform enabling efficient steering
of radiation angular momentum at the nanoscale.
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