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A process which strongly amplifies both quadrature amplitudes of an oscillatory signal necessarily adds
noise. Alternatively, if the information in one quadrature is lost in phase-sensitive amplification, it is
possible to completely reconstruct the other quadrature. Here we demonstrate such a nearly perfect phase-
sensitive measurement using a cavity optomechanical scheme, characterized by an extremely small noise
less than 0.2 quanta. The device also strongly squeezes microwave radiation by 8 dB below vacuum.
A source of bright squeezed microwaves opens up applications in manipulations of quantum systems, and
noiseless amplification can be used even at modest cryogenic temperatures.
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The sensitive measurement of electromagnetic waves
is instrumental in science and technology. A sinusoidally
oscillating field XðtÞ ¼ X1 cosðωtÞ þ X2 sinðωtÞ at the
frequency ω is characterized by the quadrature amplitudes
X1 and X2. In quantum mechanics, the quadratures are
noncommuting observables which cannot be measured
simultaneously. In a usual measurement which responds
equally to both quadratures, noise must hence increase by
at least half the zero-point fluctuations [1,2].
In a phase-sensitive measurement, the two quadratures

are amplified at different gain factors G1 and G2, such that
the output quadratures are Yi ¼ GiXi. If either of the gains
becomes very small and thus the information in this
quadrature is discarded, the other quadrature can be
perfectly measured. At the same time, the fluctuations in
the discarded quadrature can become squeezed below the
zero-point fluctuation level. Here we demonstrate such a
nearly perfect measurement, proposed very recently [3],
of microwave light using a cavity optomechanical setup.
Along with the practical device that shows promise for
applications, we realize the phase-mixing amplifier [3], and
evolve the concept further.
The most sensitive measurements of microwave fields

have taken advantage of nonlinearities of Josephson junc-
tions [4–8]. Since late 1980s [9], Josephson junction
parametric amplifiers have reached the impressive system
noise performance of 0.62 added quanta of noise in the
phase-insensitive mode, close to the fundamental limit, and
0.14 quanta in the phase-sensitive mode [10]. Therefore,
these amplifiers are currently actively used in quantum
science. Also electromechanical systems have been inves-
tigated to this end [11–15]. In recent work, Refs. [14,15]
demonstrate a phase-insensitive amplifier with a noise
relatively low but not quite yet at the quantum limit.
Our realization of a practically noiseless amplifier

can be pictured as a generic cavity optomechanical setup.

It consists of a superconducting microwave resonator,
the cavity, with frequency ωc, coupled to a 15 μm wide
membrane [16] vibrating at the frequency ωm, as seen in
Fig. 1(b). The two systems are coupled via the radiation-
pressure coupling Hint ¼ g0ncðb† þ bÞ, where nc ¼ a†a is
the number of microwave cavity photons, x ¼ b† þ b is the
(dimensionless) position operator of the mechanical oscil-
lator, and g0 is a coupling constant. The cavity and the
oscillator have the respective decay rates κ and γ. The
cavity is driven by two strong microwave tones of frequen-
cies ωþ ¼ ωc þ ωm þ δ andω− ¼ ωc − ωm − δ [Fig. 1(a)].
The pumps induce respective cavity fields of amplitude αþ
and α−. Here, δ describes the detuning from the blue or red
sideband coresonance condition [17]. The pumping results
in an enhanced linear coupling of strength G� ¼ g0α�.
This pump scheme is related to backaction evading

measurements [18] and squeezing [19–21] of the mechani-
cal oscillator, and to the dissipative squeezing recently
proposed in Ref. [22]. However, introducing a detuning
δ≳ ðG2

− −G2þÞ=κ drastically changes the resulting physics.
In the following, we suppose the resolved-sideband regime,
where ωm ≫ κ. The Hamiltonian describing this system
is [23]

H ¼ δb†bþGþða†b† þ baÞ þ G−ða†bþ b†aÞ: ð1Þ

We make a Bogoliubov transformation of the cavity to
a set of new operators α so that a ¼ uα − vα†. We choose
u ¼ coshðξÞ; v ¼ sinhðξÞ with the real parameter ξ satisfy-
ing tanhðξÞ ¼ Gþ=G−. The resulting cavity-oscillator
Hamiltonian is that of a beam splitter with coupling
strength GBG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
− −G2þ

p

, known to lead to the cooling
of the mechanical oscillator [16]. If the cavity is over-
coupled, signals sent to it are completely reflected; i.e., the
reflected signal at a given frequency ω experiences only a
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phase shift, or αoutðωÞ ¼ eiϕðωÞαinðωÞ. In a large range of
frequencies determining the amplifier bandwidth, different
phase shifts of the Bogoliubov wave at positive and
negative frequencies translate into phase-sensitive or
phase-mixing amplification in the original cavity frame
[23]. Even though the mechanical oscillator has a high
thermal occupation number nTm ≃ kbT=ℏωm ≫ 1, the
added noise referred to the input is of the order of
ðγκ=G2

BGÞnTm and can be almost neglected in our setup.
One can thus reach very nearly quantum limited operation
even when the mechanical oscillator is far from its quantum
ground state.
At this point, let us discuss a phase-sensitive amplifier

[1], referring to Fig. 1(c). At the input on top of a coherent
signal, there is quantum noise, which usually does not show
a phase preference. Hence the possible values of the
quadrature amplitudes X1 and X2 of the input signal X
fall uniformly inside the gray circle representing the
variance. Following phase-sensitive amplification, the input
noise gets squeezed into an ellipse owing to unequal gains
G1 and G2 for the input quadratures. The principal axes in
the amplified input noise define the preferred (output)
quadratures which obey Y1 ¼ G1X1, Y2 ¼ G2X2, and the
average amplified signal is Y2 ¼ 1=2ðY2

1 þ Y2
2Þ ¼ G2X2,

with the total gain G.
Phase-sensitive amplification requires specifying a car-

rier frequency around which the quadrature operators are
defined [1]. In our setup, the carrier frequency is the center
frequency of the pumps, ω0 ≡ ðω− þ ωþÞ=2 that here also
roughly equals ωc. The carrier frequency not only defines
the output quadratures, but the input (preferred) quadra-
tures as well. Therefore, unless the input signal lies exactly
at ω0, a rigorous definition of the input quadratures requires

the presence of two fields symmetrically centered around
ω0. The latter case means that one has to consider a
field also at the idler (or, image) frequency ωid, satisfying
2ω0 ¼ ωin þ ωid, as illustrated in Fig. 1(a). In a homodyne
detection with a mixer (see below) the information in the
idler is retained, which allows for an improved signal
compared to phase-insensitive (heterodyne) detection,
where the idler is discarded.
A phase-sensitive amplifier can turn into a phase-mixing

amplifier when ωin ≠ ω0 [3]. It differs from the phase-
sensitive amplifier because the input-output relations for
the quadratures cannot be transformed to the preferred
form; i.e., each output quadrature depends through
(implicit) gains Gij on both input quadratures: Y1 ¼
G11X1 þ G12X2 and Y2 ¼ G21X1 þ G22X2. As a result,
the ellipse representing the added noise [Fig. 1(c)] is
rotated with respect to the input noise ellipse.
A local oscillator (LO) phase θ defines a detection frame

for the quadratures. Typically, the detection is in the
preferred basis [4,6,10]. In phase-mixing amplifiers, the
added noise can have a nontrivial dependence on θ, and
the signal-to-noise ratio can potentially be improved
by tuning away from the basis defined by the gains. In
Fig. 1(c), the detection is indicated by the projections on the
Yθ
2 axis. We can hence define a θ dependent gain Gθ whose

precise form depends on the phase of the input signal. The
added noise is referred to the input, that is, the spectral
density is SθX ¼ SθY=G

2
θ, where SθY represents the output

noise when no input signal is present. Expressed in units of
quanta at the signal frequency, the phase-dependent added
noise is Nθ

add ¼ SθX=ℏωin.
We perform the experiments in a dilution refrigerator.

The basic signal scheme is shown in Fig. 1(b). The two

LC

Cg(x)

(b)

50TR

NF S11

PRT

N

(c)

X1

X2

θ

Y2
θ

Y1
θ

φI
Y1

Y2

SY
θ

φo

(a) ωω

ω

ωω

δδ

ω
+ ω

ω
− ω ωω

FIG. 1. Optomechanical phase-sensitive measurement. (a) Two strong almost equal-amplitude pump tones (red and blue) are applied
detuned from the sideband resonance ωc � ωm by the amount δ≲ κ. (b) Drumhead-type mechanical oscillator is coupled to a
superconducting microwave-frequency (LC) resonator through a radiation-pressure force. A 50 Ω resistor is used as an adjustable
noise source with a controlled temperature TR, directly connected through a directional coupler. The cavity frequency is
ωc=2π ≃ 6.9148 GHz, cavity linewidth κ=2π ≃ 6.44 MHz, internal cavity losses κI=2π ≃ 90 kHz, frequency of the mechanical
mode ωm=2π ≃ 10.319 MHz, and its linewidth γ=2π ≃ 107 Hz. (c) A sinusoidal signal (line) is represented with the quadrature
amplitudes X1 and X2. Before amplification (left) the gray circle denotes the quantum noise of the input signal. Following phase-
sensitive amplification (right) the input quantum noise is squeezed into an ellipse. The total noise at the output has a contribution
from the noise added in the process (light blue, ideally none). The signal plus noise is measured in a local oscillator basis defined by the
angle θ.
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microwave pump tones and a weak signal tone are applied
to the coupler port of the device. The amplification is
measured with a network analyzer as the S11 reflection
parameter. In Figs. 2(a)–2(c), we demonstrate phase-
insensitive amplification of microwaves achievable with
the scheme. The double-peak structure corresponds to the
positions of the resonances of the signal and idler, that is,
where a phonon in the mechanical oscillator is emitted or
absorbed by a pump tone. As shown in Fig. 2(b), we
observe high amplification up to 60 dB, or alternatively a
broad 3 dB bandwidth (≃430 kHz). The data shown in
Fig. 2(c) correspond to the noise measurements in Fig. 2(d),
discussed below. The theoretical predictions [23], overlaid
on the experimental data, show a good agreement. In order
to quantitatively explain the gain profiles, we include a
parametric modulation term to the mechanical oscillator
[24]. Notice that in Figs. 2(a)–2(c), we used slightly
varying ω0 (but ≃ωc) shifting the peaks.
For noise measurements, we use a 50 Ω resistor as a

tunable known noise source. It is attached to a heater and a
separate thermometer, and connected to the sample via a
short superconducting coaxial cable. At the known cali-
bration temperature TR, the quantum-noise power from the

resistor is Nin ¼ coth½ℏωc=ð2kbTRÞ�=2. This calibrated
input noise gives rise to an output noise power of PRT ¼
NinG2F þ ðNadd þ NF=G2ÞG2F at room temperature. Here,
F and NF ≃ 18� 2 quanta [23] are, respectively, the gain
and the technical noise due to all amplifiers and attenuation
following the sample. We use the system noise Neff ≡
Nadd þ NF=G2 and G2F as adjustable parameters when
fitting data to the expression for PRT at varying values of
TR. In Fig. 2(e) we display an example of the measured
power, showing a good agreement with the expected
quantum noise.
The total (averaged over quadratures) noise corresponds

to a phase-insensitive measurement, with the measurement
frequency different from ω0. As shown in Fig. 2(d), we
observe a total system noise well below the single quantum
level, and the added noise Nadd is consistent with the
quantum limit of 0.5 quanta. The theory curves include
dielectric heating of the baths by the pumps up to nTm ≃ 80,
nI ≃ 1.1. Here, nI is photon occupation of the internal bath
of the cavity mode. In a previous cooldown, we made a
rough calibration of the bath heating by using sideband
cooling, observing a sharp onset of heating around the
powers discussed here [23]. The low noise appears clearly
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FIG. 2. Phase-insensitive amplification and noise. (a) Gain at a fixed pump power, and at varying pump detunings. Black curves are
theory predictions withG−=2π ¼ 580 kHz,Gþ=2π ¼ 496 kHz. (b) Amplification at a high gain (red) or over a broad bandwidth (blue).
Inset: Improvement of the signal-to-noise ratio of a coherent input signal (sharp peak). The original (black) noise floor is limited by the
commercial cryogenic amplifier. When the pump tones are switched on (green) the signal-to-noise ratio in phase-insensitive
amplification is improved by 12 dB. (c) Gain forG−=2π ≃ 308 kHz,Gþ=2π ¼ 304 kHz, and δ=2π ≃ 20 kHz. The black line is a theory
prediction. (d) Added noise corresponding to panel (c): Blue circles are the total system noise, and red squares represent the added noise
due to the optomechanical amplification. The solid black line is a theory curve, while the blue line shows the quantum limit [25].
(e) Noise calibration by varying the power emitted by a known noise source. The noise at device output is shown. The data sets
correspond to ωin=2π ¼ 6.914 682, 6.914 686, and 6.914 689 GHz, in (c) from top to bottom. The solid lines are fits to the quantum-
noise formula.
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as an improvement of signal-to-noise ratio of a weak signal
when the amplification is switched on, as displayed in
Fig. 2(b) (inset) where the observed noise floor is domi-
nated by amplified vacuum noise. Figure 2(d) shows that
the added noise can be very close to 0.5 quanta even when
the mechanical oscillator responsible for the amplification
resides far from its ground state.
For phase-sensitive homodyne measurements, the output

signal is digitally mixed to the center frequency ωLO ¼ ω0

in the scheme of Fig. 3(a). By changing the phase θ of the
LO, we obtain the quadratures Yθ

1ðtÞ and Yθ
2ðtÞ ¼ Yθþπ=2

1 ðtÞ
oscillating at the center frequency. The noise measurements
are made as described above, but individually for each θ
[23]. We discover that the noise falls well below the
quantum limit in one quadrature [Fig. 3(b)] and we estimate
Nadd ≲ 0.2 quanta. The uncertainty is dominated by the
statistical errors from fitting to the quantum noise. The
theoretical added noise [3,23] (black) in Fig. 3(b) is
evaluated using nTm ≃ 300, nI ≃ 1.5, capturing the main
features involving the optimum noise offset from the
preferred quadrature.
A fundamental property of a phase-sensitive amplifier

is the possibility to generate squeezed propagating states
as shown in many experiments in optics [26,27], and with
Josephson devices, see, e.g., [6,9]. Quantum squeezing of
the light emitted from optomechanical cavities has also
recently been observed at optical frequencies [28–30]. Next,
we show that our approach provides a way to generate

squeezed radiation. This demonstrates a new mechanism
over the previously utilized ponderomotive squeezing
[28–30]. In the plane of the input of the cryogenic amplifier,
we measure strong squeezing within a bandwidth of
700 kHz, with the maximum of ≃3.5 dB below vacuum,
as shown in Fig. 4. The calibration procedure is described in
the Supplemental Material [23]. The theory predictions in
Figs. 4(b)–4(d) are generated using nTm ¼ 400, nI ¼ 1.6.
We infer that the amount of squeezing, depleted by losses
before the cryogenic amplifier, right following the sample
has been up to 8 dB. This value is on par with those obtained
with Josephson parametric amplifiers (JPA), e.g., 10 dB in
Ref. [6].
Intense squeezed coherent states are a valuable

resource [31–34]. When injected with a sinusoidal
signal, we estimate the setup of Fig. 4 to produce a bright
squeezed coherent state of up to ∼1014 photons= sec, or
∼ − 65 dBm. If realized in optics, our approach can
provide luminous squeezed laser beams to overcome the
quantum-noise limitation in gravitational wave observa-
tions. Our amplification scheme compares favorably over
JPA because it does not require superconductivity, and is
able to handle 4 orders of magnitude more input power than
a corresponding JPA [6], or 2 orders of magnitude more
than in Ref. [8]. Moreover, in contrast to cavity-based
parametric amplifiers, the gain-bandwidth product is
unlimited [23]. The bandwidth is smaller than in JPA,
but it can be increased by stronger coupling, or by
implementing an electromechanical metamaterial. With
slight improvements, the device can operate below the
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quantum limit at modest cryogenic temperatures of a few
kelvin, hence offering an attractive technology for narrow-
band measurements in particle physics [35], with super-
conducting qubits [36–38], or finally, in microwave
optomechanics.
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