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A quantum mechanical formulation of de Sitter cosmological spacetimes still eludes string theory. In this
Letter we conjecture a potentially rigorous framework in which the status of de Sitter space is the same as
that of a resonance in a scattering process. We conjecture that transition amplitudes between certain states
with asymptotically supersymmetric flat vacua contain resonant pole characteristic metastable intermediate
states. A calculation employing constrained instantons illustrates this idea.
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Introduction.—The Universe is not just expanding; the
expansion is accelerating [1–5]. This implies that our
Universe is asymptotically de Sitter (dS) [6–10]. The dS
metric expressed in global coordinates is

ds2 ¼ −dt2 þ l2dScosh
2

� ffiffiffiffiffiffi
t
ldS

r �
ðdψ2 þ sin2ψdΩ2

2Þ ð1Þ

with ldS ¼
ffiffiffiffiffiffiffiffiffi
3=Λ

p
. Expressed in conformal time

ds2dS ¼ 3

Λcos2η
f−dη2 þ dψ2 þ sin2ψdΩ2

2g; ð2Þ

where

cosh

� ffiffiffiffi
Λ
3

r
t

�
¼ 1

cos η
: ð3Þ

Our current understanding of quantum gravity is
dependent on the existence of stable asymptotically cold
boundaries, and correlation functions evaluated at those
boundaries. Supersymmetric anti–de Sitter (AdS) space and
asymptotically Minkowski space are examples. Boundary
correlators and S-matrix elements are the mathematical
objects that the theory is built out of [11–15]. No such
understanding exists for de Sitter space.
Even if de Sitter space were stable with respect to decay,

its future spacelike asymptotic boundary would fluctuate,
necessitating an integration over the geometry of future
infinity—a problem that could be as complicated as any
quantum gravity problem. In addition it is expected that all
de Sitter vacua are unstable with respect to Coleman–De
Luccia (CDL) decay to flat and AdS vacua [16,17]. This
would further complicate the asymptotic future boundary,
turning it into a superposition of fractals populated by
crunches and hats.
But the existence of hats—Friedmann-Robertson-

Walker (FRW) patches with vanishing cosmological con-
stant—creates a new opportunity for a rigorous framework
for de Sitter space, in which it appears as a metastable state

in a transition amplitude between two asymptotically flat
states. Our purpose in this Letter is to define such a
transition amplitude and show that resonant poles, asso-
ciated with de Sitter intermediate states, exist in its spectral
representation.
To illustrate the idea we begin with a configuration that

resembles a time-symmetric slice of a de Sitter vacuum. The
state can be propagated forward and backward in time to give
past and future quantum superpositions of fractal boundaries,
each containing an infinite number of hats.Wemake a gauge
choice by picking a hat in the past and a hat in the future and
transform them to the center of a causal diamond. The causal
diamondof thehats comprises a universe for an observerwho
begins and ends in the past and future hats.
The complete details of the computation will be pre-

sented in a technical paper that one of us will publish
concurrently [18]. Suggestions that dS might be viewed as a
resonance have occurred previously [19]; however, to our
knowledge there has been no calculation to establish this.
We present one in this work.
Resonances and the causal patch.—In [19] a simplified

landscape of twominima, onewithΛ > 0 and the other with
Λ ¼ 0, was considered and an OðD − 1Þ symmetric CDL
instanton solution was worked out; the Penrose diagram for
this spacetime is the left diagram of Fig. 1. On the spacelike
slice in the middle of the left diagram of Fig. 1(a) Hartle-
Hawking state for the spacetime can be constructed and
evolved to an out state [22]. The information within the
causal patch (regions Iþ IIþ III) is then all that is needed
to capture all the information if horizon complementarity
[26–29] is correct, as anything that passes out of the causal
patch (goes into IV) will have a complementary description
in terms of the highly scrambled Hawking radiation that will
go into I. Therefore, a spacelike slice in I contains all the
information from the Hartle-Hawking state and we can
construct the out state there [30].
A resonance is an intermediate metastable state that can

occur between any pair of initial and final states [31]. Many
of these channels can be used to establish the existence of a
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resonance. We compute a spectral representation of the
transition amplitude between in and out states, houtjini, and
show that it contains a pole characteristic of a dS inter-
mediate state [32,33]. The location of the pole is a function
of Λ.
The transition is computed as a path integral over all

histories—including all possible spacetime configurations,
and field configurations—that connect the in and out states.
A mathematically tractable, though not realistic channel, as
it is entropically suppressed, is to construct the in and out
states by evolving in a time reversal symmetric manner
from a semiclassical spacelike slice in the middle of III.
We are not proposing that this is the true cosmological
history of our Universe; we are proposing that such a pole
in such an amplitude provides a precise definition within
the context of supersymmetic backgrounds of a dS space
[34]. This is the same logic that applies to any metastable
state in quantum mechanics.
Consider the CDL instanton in the thin wall tensionless

domain wall limit (see center diagram Fig. 1), which can be
constructed using Barrabès-Israel null junction conditions
[35]. The details of the nucleation process are not important
in what follows.
We define the amplitude as a path integral over the causal

patch containing the hats. We do not try to justify this; we
define such an amplitude to be the object of interest and
show that it has a dS pole in the spectral representation.
This definition eliminates the complicated fractal bounda-
ries in regions IV and V.
An off shell continuation of this configuration has the

nucleation point and its time reversal separated by a finite

conformal time 2η0 (see the right diagram of Fig. 1). In
what follows we truncate the path integral to an integral
over η0, (4). This deformed spacetime is not a true instanton
of the orginal CDL equations but has the status of a
constrained instanton solution [36–38], with the constraint
that the separate FRW regions are separated by a given
proper time along geodesic ψ ¼ 0. We refer to this
spacetime as the constrained CDL instanton. The path
integral over histories (4) contains deformations of this
geometry including metric and field fluctuations about the
instanton solution as well as nonperturbative effects such as
further vacuum decay outside the hat. This minisuperspace
approximation allows us to focus on the first contribution to
this path integral over all histories of the metric and fields
(4) by only integrating over histories where no particle
content is excited and the integration is over η0. Defining
the proper time along ψ ¼ 0 to be 2t0 using (3),

houtjini¼
Z

DgDφexpfiS½g;φ�g

∼N
Z

dt0 expfiS½t0�gþhigher order terms: ð4Þ

The higher order terms are weighted by powers of ldS.
This expresses the amplitude as an integral over the relative
time between the initial and final hats. The Fourier trans-
form of the t0 dependence defines the spectral representa-
tion of houtjini.
The action in Liouville gravity.—In this section we

illustrate the computation in the context of dS2, which
can be described by Lorentzian timelike Liouville quantum
gravity [39–42], which has dS2 as a solution [42–44]. The
action has bulk contributions and Gibbons-Hawking
boundary contributions from the causal patch. In 1þ 1
dimensions, the Gauss-Bonnet theorem implies that the
boundary contributions integrate to the Euler characteristic
of the geometry; therefore in 1þ 1 dimensions we only
need to consider the volume contribution to the action
S½η0�. In the approximations that we are employing the
only contributions to the action S½η0� that are η0 dependent
are those of the purely dS region [45], the shaded
portion of Fig. 2(a). Gauge fixing the metric using
conformal gauge gμν ¼ eϕcημν gives the Liouville action,
SL½η0� ¼ −ð1=16πb2Þ R d2ξðηab∂aϕc∂bϕc − 16λeϕcÞ with
eϕc ¼ ð3=Λcos2ηÞ and λ ¼ πμb2 so ð1=2πb2Þ ¼
ðπμ=2πλÞ ¼ ð4!μ=4ΛÞ [46]. The action must be regulated
as it is IR divergent due to the infinite volume in the tips
near future and past infinity. The regulator must be one that
respects the dS and Lorentz boost symmetries [48] in order
to separate the divergence in an invariant way. Surfaces of
constant r20 ¼ ð3sin2ψ=Λcos2ηÞ serve as a cutoff. (In higher
dimensions these are surfaces of constant transverse Sd−1

radius in dþ 1 dimensions.) Spacetime points move along
these surfaces under boosts and rotations. The regulated

FIG. 1. (Left) The Penrose diagram of the Lorentzian continu-
ation of the CDL instanton solution [19–21]. I and II are open
(k ¼ −1) FRW universes that are asymptotically flat [19–21]. IV
andVare asymptotically dS.Σ is the conformal 2-sphere defined by
the intersection of the lightlike infinity of I and the spacelike infinity
of IV. The curves indicate orbits of theSOð3; 1Þ symmetry,which is
the conformal group onΣ [21]. The red lines between III, IV, andV
represent the cosmological horizons in the dS space of the observer
at r ¼ 0. The green curve in III represents the domainwall between
the FRW and dS regions. (Center) The tensionless domain wall
limit and (right) the constrained CDL spacetime where the FRW
bubbles are separated by 2η0; here III is pure dS space and is the
unregulated integration region.
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integration region is the section bounded by the red curve in
Fig. 2(a), V.
Evaluating −ð1=16πb2ÞRVd2ξfηab∂aϕc∂bϕc−16λeϕcg¼

ð1=4πb2ÞRVdψdηð1þsin2η=cos2ηÞ, and expanding it in a
Laurent expansion in w0 ¼ 1=r0 up to O½w0�, yields

SL ¼
−4 log

��� ffiffiffi
3
Λ

q
w0

���þ 4 − π2

4
þ η2

0

2
− 2 log cos η0

πb2
; ð5Þ

with ð1=πb2Þ¼ð4!μ=2ΛÞ. The −ð4!μ=2ΛÞflog ffiffiffiffiffiffiffiffiffiffiffiffið3=ΛÞp
w0−

4þðπ2=4Þg term is the divergent contribution of the action
that remains when η0 ¼ 0. It is just the action of the
Lorentzian tensionless domain wall CDL instanton, S0, in
this limit, and when exponentiated can be absorbed into the
overall normalization factor of (4). Expressing (5) in terms
of proper time t0 and defining ~SL ¼ SL − S0, up to O½w0�,

~SL ¼ 4!μ

4Λ

�
arctan2

�
tanh

� ffiffiffiffi
Λ
3

r
t0

��

þ log cosh

� ffiffiffiffi
Λ
3

r
t0

�	
: ð6Þ

The only term that growswith t0 is log cosh ½
ffiffiffiffiffiffiffiffiffiffiffiffiðΛ=3Þp

t0� ¼ffiffiffiffiffiffiffiffiffiffiffiffiðΛ=3Þp
t0 þ log j1þ e−2

ffiffiffiffiffiffiffiffiffi
ðΛ=3Þ

p
t0 j − log 2; the others are

bounded. Thus we find that for large t0, ~S behaves likeffiffiffiffiffiffiffiffiffiffiffiffiðΛ=3Þp
t0. Treating the bounded term as a perturbation and

Fourier transforming with respect to t0 yields

Z
∞

0

dt0eið
~SL½t0�−ωt0Þ ¼

Z
∞

0

dt0e
i½2μ

ffiffiffiffiffiffiffiffi
ð3=λÞ

p
t0−ωt0� þ � � �

¼ i

ω − 2μ
ffiffiffi
3
Λ

q þ ρ1½ω� þ � � � ; ð7Þ

thus revealing a pole in the spectral representation. One notes
that 2μ

ffiffiffiffiffiffiffiffiffi
3=Λ

p
is the energy of the static patch of dS space; we

take the existence of this pole to be the indication of an
intermediate dS vacuum.
This indicates that the dS space can be thought of as a

resonance in a transition amplitude.
The pole in (7) occurs at a real value of ω but this is

an approximation. When the metastable character of the
dS vacuum is accounted for the cosmological constant
obtains a small imaginary part determined by the CDL
decay rate. This shifts the pole by a slightly imaginary
amount, which is standard in the analysis of resonances
[33,49].
The four-dimensional case.—Let us repeat this in 3þ 1

dimensions using the general relativity (GR) limit of the
spacetime [50]. The regulated cutoff region V is shown in
Fig. 2(b). V is bounded by spacelike and null surfaces.
Hence we must append to the Einstein-Hilbert action [51]
the Gibbons-Hawking-York boundary term [52,53]. The
boundary term has to be generalized to null surfaces and
corners as in [54–59].

S ¼
Z
V

d4x
2κ

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ −
X

i¼2;4;6

Z
∂Vi

d3x

ffiffiffiffiffiffiffi
hðiÞ

p
KðiÞ

κ

þ
X

i¼1;3;5;7

1

2κ

Z
∂Vi

d2x
ffiffiffiffiffiffiffi
qðiÞ

p
Θþ

X5
j¼1

ScornerðjÞ: ð8Þ

The second to last term is the null surface contribution
and the last term is the five corner contributions that
depend on a product of their boost angle and the area of
the S2 at that point [56,58]. The geometry is closely
related to Wick rotations of those in [56–58,60] where
the analysis of the null and corner terms was carried out.
More detailed arguments on these terms are given in [18].
Evaluating (8) to O½w0�, with w0 ¼ 1=r0 and as a

function of t0, gives

S ¼ 4π4!

2κΛ

�
1

2
log cosh

� ffiffiffiffi
Λ
3

r
t0

�
þ
1 − sinh2

h ffiffiffi
Λ
3

q
t0
i

8cosh2
h ffiffiffi

Λ
3

q
t0
i

þ
�
1

4
− log 4

	
tanh2

� ffiffiffiffi
Λ
3

r
t0

�	
þ S0; ð9Þ

with S0 ¼ ð4π4!=2κΛÞ½ðΛ=2w2
0Þ þ 1

2
logðΛ=3w2

0Þþ
ð5=24Þg þ Scorner containing divergent terms that are
t0. Apart from the log cosh ½ ffiffiffiffiffiffiffiffiffiffiffiffiðΛ=3Þp

t0� term the t0
dependent terms of (9) are bounded and monotonic
for t0 > 0. Fourier transforming the amplitude with
~S ¼ S − S0 and employing a similar expansion as (7)
reveals the pole again,

FIG. 2. (a) The slices of constant r20 ¼ ð3sin2ψ=Λcos2ηÞ
are the curved surfaces intersecting the null lines at
ψ1 ¼ arctan ½cos½η0�= sin η0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3=Λr20

p
� and ψ2 ¼ ðπ=2Þ −

arctan ½sin η0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=Λr20Þ

p
= cos η0� as well as their reflection

about ψ ¼ 0. The null domain walls dividing the dS and
FRW regions intersect ψ ¼ 0 at conformal time η ¼ η0 and
η ¼ −η0. (b) V for the 3þ 1 spacetime.
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Z
∞

0

dt0eið
~S½t0�−ωt0Þ ¼

Z
∞

0

dt0e
i½2ð4π=κÞ

ffiffiffiffiffiffiffiffi
ð3=λÞ

p
t0−ωt0� þ � � �

¼ i

ω − 2 4π
κ

ffiffiffi
3
Λ

q þ � � � : ð10Þ

Again we have a pole in the spectral representation at
the energy of the static patch. This term is present in
dþ 1 dimensions.
Discussion and conclusions.—The main implication of

this paper is that there exist transition amplitudes between
excited states of supersymmetric flat vacua employed in
string theory that possess dS vacua as resonances. Although
we have not mentioned it, a given dS vacuum contains an
exponentially large number of almost degenerate states and
in a real quantum theory we would expect a correspond-
ingly dense collection of poles. This is analogous to the
idea of a black hole as a collection of resonances.
None of this should be taken to mean that ordinary

scattering amplitudes for finite numbers of particles contain
dS space. The jini and jouti states we are discussing are
open (k ¼ −1) FRW cosmologies that contain an infinite
number of particles. The particles are uniformly distributed
on hyperbolic surfaces and, in particular, there exists an
infinite number of particles on Σ of Fig. 1 (left). These
excited states manifest as domain walls and dS space
should be thought of as a resonance between these
domain walls.
We suggest that states of this type form a superselection

sector in which the dS resonances are found. Since these
states contain an infinite number of particles but their
entropy must not exceed the finite dS entropy of the causal
patch, they must be infinitely fine-tuned. Such states would
be the bulk states of FRW/CFT [19,21,61,62] or a similar
string theory construction that possesses dS space as an
intermediate configuration.
It has been asked how recent work on complexity and

relations between geometry and entanglement apply in a
cosmological setting. In 2þ 1 dimensions the action
calculation when continued to AdS space is similar to
Wick rotated calculations relating complexity to action in
the AdS BTZ black hole [57,60]. In the continuation V
replaces the Wheeler–DeWitt patch of [57,60]. In both
cases the action grows linearly with time t0, which in the dS
case leads to the resonant pole found; in the AdS version it
represents the linear growth in complexity. It is possible
that in cosmology the exponential expansion of space may
also represent a growth in complexity; further study in this
direction is demanded.
A longer paper containing details of the computation will

be released concurrently [18].
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