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Achieving effectively adiabatic dynamics is a ubiquitous goal in almost all areas of quantum physics.
Here, we study the speed with which a quantum system can be driven when employing transitionless
quantum driving. As a main result, we establish a rigorous link between this speed, the quantum speed
limit, and the (energetic) cost of implementing such a shortcut to adiabaticity. Interestingly, this link
elucidates a trade-off between speed and cost, namely, that instantaneous manipulation is impossible as it
requires an infinite cost. These findings are illustrated for two experimentally relevant systems—the
parametric oscillator and the Landau-Zener model—which reveal that the spectral gap governs the quantum
speed limit as well as the cost for realizing the shortcut.
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A popular saying states that “there ain’t no such thing as
a free lunch.” Although quite casually formulated, this
phrase expresses nothing less but the gist of the second law
of thermodynamics, namely, that nonideal processes are
always accompanied by the irreversible expense of a
thermodynamic resource. Nevertheless, recent research in
quantum control and quantum thermodynamics has seen
growing popularity of so-called “shortcuts to adiabaticity,”
i.e., fast processes with the same outcome as an ideal,
infinitely slow process [1]. Such shortcuts are fast proc-
esses with suppressed nonequilibrium excess energy [2,3],
and apparently provide means to circumvent the second law
in isolated systems [4–6]. Thus, a variety of techniques
have been developed: using dynamical invariants [7],
inversion of scaling laws [8], the fast-forward technique
for Schrödinger [9–14] and Dirac dynamics [15], transi-
tionless quantum driving [16–19], classical dissipationless
driving [20,21], optimal protocols from optimal control
theory [22–28], optimal driving from properties of the
quantum work statistics [29], “environment” assisted
methods [30], using the properties of Lie algebras [31],
and approximate methods such as linear response theory
[5] and fast quasistatic dynamics [32].
Among this plethora of techniques transitionless quantum

driving (TQD) is unique. In its original formulation [16–18]
one considers a time-dependent Hamiltonian H0ðtÞ and
constructs an additional counterdiabatic field H1ðtÞ, such
that the joint HamiltonianHðtÞ ¼ H0ðtÞ þH1ðtÞ drives the
dynamics precisely through the adiabatic manifold ofH0ðtÞ.
Moreover,H1ðtÞ vanishes by construction in the beginning,
t ¼ 0, and the end, t ¼ τ, of the finite time process. Thus, if
only considering the energy balance hHðτÞi − hHð0Þi ¼
hH0ðτÞi − hH0ð0Þi, implementing such a shortcut to adia-
baticity appears to be thermodynamically free [33]. Even

more dramatically, it seems that such an energetically free
shortcut to adiabaticity could be implemented for any
arbitrarily fast process of arbitrarily short duration τ.
That this almost naive interpretation of TQD cannot be

entirely sound has been formalized recently in Ref. [34]
where a family of cost functionals is introduced. They are
given by the time averaged norm of the counterdiabatic
field, Cn

t ¼ νt;n
R
τ
0 dt∥H1ðtÞ∥n, where νt;n is a setup de-

pendent constant and the index of the norm n depends on
the nature of the applied fields (see Ref. [34] for a more
detailed discussion). Here, we show that the norm plays the
most crucial role in defining the cost of driving. Therefore,
we remove any setup dependence by assuming that
νt;n ¼ n ¼ 1. Although insightful, defining a cost ad hoc
is not entirely satisfactory. In particular, it is not immedi-
ately clear how Cn

t corresponds to expended resources.
Moreover, the definition of Cn

t also does not address the
rather unsettling impression that TQD could be performed
in arbitrarily short times τ. In this Letter we resolve both
issues by showing that a cost function that depends on the
norm of the counterdiabatic term is intimately related to the
maximal speed of the evolution.
It has been established in virtually all areas of quantum

physics [35–38] that the Heisenberg uncertainty relation for
energy and time sets a quantum speed limit (QSL) [39–43],
i.e., a fundamental upper bound on the speed of quantum
evolution. These bounds have been extensively studied for
isolated [44–50] and open [51–61] systems. It has been
shown that the maximal speed of quantum evolution is
given by the time averaged norm of the generator of the
dynamics [51], which in the case of unitary dynamics and
for orthogonal states reduces to the average energy E [48].
Thus, the minimal time during which a quantum system can
evolve from the initial to the final state, i.e., the QSL time
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τQSL, is determined by τQSL ≃ ℏ=2E [48,51]. Since this
QSL is a consequence of fundamental properties of
quantum dynamics, it also has to apply to quantum
processes facilitating shortcuts to adiabaticity. In other
words, the QSL prohibits TQD to be performed in
arbitrarily short times.
In this Letter we show that the cost of TQD [34] and the

QSL [51] are intimately connected. As our main result we
rigorously prove a trade-off between the speed and the
thermodynamic cost: the faster one wants to implement a
shortcut, the higher is the thermodynamic cost of realizing
the quantum process. We will further illustrate that this
insight is not only of theoretical and conceptual interest, but
also of practical relevance. To this end, we will analyze two
experimentally important systems, namely, the parametric
harmonic oscillator and the Landau-Zener model.
Parametric harmonic oscillators have been shown to be
ideal test beds for quantum thermodynamic relations
[62–65], which can be easily implemented for instance
in ion traps [66–69]. The Landau-Zener model, on the other
hand, is closely related to the Ising model [70–72] and
hence is instrumental for current technological advance-
ments in quantum annealing [73] such as the D-wave
machine [72,74,75].
Preliminaries.—Consider a time-dependent Hamiltonian

H0ðtÞ with instantaneous eigenvalues fεnðtÞg and eigen-
states fjntig. In the limit of infinitely slow variation of
H0ðtÞ, i.e., the adiabatic limit, no transitions between
eigenstates occur [76]. Now consider a nonadiabatic para-
metrization of H0ðtÞ. In this case we can construct a
corresponding Hamiltonian HðtÞ ¼ H0ðtÞ þH1ðtÞ such
that the adiabatic solution of H0ðtÞ is an exact solution
of the dynamics generated by HðtÞ. It can be shown that
[16–18,34]

H1ðtÞ ¼ iℏ½∂tjntihntj; jntihntj�: ð1Þ
Note that computing the counterdiabatic HamiltonianH1ðtÞ
requires the instantaneous eigenbasis jnti. Since finding
these time-dependent eigenstates can become arbitrarily
complicated, hybrid methods have been developed utilizing
tools from optimal control theory [25–28].
In Ref. [34] a family of functionals has been proposed

to quantify the cost associated with implementing H1ðtÞ.
The simplest member of the family is given by the trace
norm ∥·∥ [34,77–79].

C1
t ≡ C ¼

Z
τ

0

dt∥H1ðtÞ∥ ð2Þ

with νt;1 ¼ 1. It is easy to see that for a single two-level
spin, ∂tC is proportional to the average power input [34];
i.e., H1ðtÞ reduces to an orthogonal, magnetic field. More
generally, C can be interpreted as the additional action
arising from the counterdiabatic driving. Hence, the rela-
tion to the QSL becomes apparent, since loosely speaking

the QSL sets a lower bound on the action EτQSL ≃
ℏ=2 [48].
The QSL is a fundamental upper bound on the rate with

which a quantum state can evolve. For our present purposes
we are interested in the evolution of pure states under the
time-dependent Schrödinger equation iℏ∂tjψ ti ¼ HðtÞjψ ti.
It has been shown that in this case the maximal rate of
change of the angle between the initial and time-evolved
state Lt ¼ arccos jhψ0jψ tij is given by

∂tLt ≤ vQSL ≡ jϵtj
ℏ cosðLtÞ sinðLtÞ

; ð3Þ

where εt ¼ ∥HðtÞjψ t >< ψ tj∥ [51]. From this maximal
quantum speed one easily obtains the QSL time [51]

t ≥ τQSL ≡ ℏ
2Eτ

½sinðLτÞ�2; ð4Þ

where Eτ is the time-averaged norm of the energy,
Eτ ¼ 1=τ

R
τ
0 dtjϵtj, and τ is the length of the driving

protocol. Note that Eq. (4) is an expression of the
Heisenberg uncertainty principle of energy and time for
time-dependent, driven quantum systems [48].
Trade-off between speed and cost.—It is easy to see that,

in the case of TQD, the instantaneous cost, i.e., the trace
norm of the counterdiabatic Hamiltonian H1ðtÞ, reduces to

∂tC ¼ ∥H1ðtÞ∥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h∂tntj∂tnti

p
; ð5Þ

where we used that h∂tntjnti ¼ 0, which is true for all
Hamiltonians with an entirely discrete eigenvalue spec-
trum. By further noting that jψ ti ¼ jnti and HðtÞ ¼
H0ðtÞ þH1ðtÞ with H1ðtÞ as given in Eq. (1) ϵt simply
becomes

ϵt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2nðtÞ þ h∂tntj∂tnti

q
; ð6Þ

where we employed again h∂tntjnti ¼ 0.
Substituting Eqs. (5) and (6) into Eq. (3) we obtain the

maximal speed with which a quantum state can undergo
transitionless quantum driving

vQSL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2nðtÞ þ ð∂tCÞ2

p
ℏ cosðLtÞ sinðLtÞ

; ð7Þ

and the QSL time becomes

τQSL ¼ ℏτ½sinðLτÞ�2
2
R
τ
0 dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2nðtÞ þ ð∂tCÞ2

p : ð8Þ

The latter two equations constitute our main results. First,
we have related the cost for TQD introduced in Ref. [34] to
one of the most fundamental results in modern quantum
physics—the Heisenberg uncertainty principle for energy
and time. Second, Eqs. (7) and (8) express, in a transparent
and immediate way, the trade-off between speed and cost of
a shortcut to adiabaticity. In particular, Eq. (7) shows that
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the faster a quantum system evolves along its adiabatic
manifold, the higher is the cost of implementing the
shortcut [80]. Equation (8) states that the shorter the time
is during which a quantum system is driven from the initial
to the final energy eigenstate, the more thermodynamic
resources have to be expended [81]. The remainder of this
analysis is dedicated to two experimentally relevant case
studies, which illustrate this trade-off for practical
applications.
Case study 1: harmonic oscillator.—The “unperturbed”

Hamiltonian of the parametric harmonic oscillator reads

H0ðtÞ ¼
p
2m

þ 1

2
mω2

t x2: ð9Þ

For the sake of simplicity we only consider situations in
which the system is initially prepared in its ground state

ψ0ðxÞ ¼
�
mω0

πℏ

�
1=4

exp

�
−
mω0x2

2ℏ

�
; ð10Þ

where the corresponding energy eigenvalue is ε0ð0Þ ¼
ℏω0=2. A straightforward calculation then reveals that
the cost of keeping the oscillator in its instantaneous
ground state at all times is

∂tC ¼
���� ∂tωtffiffiffi

8
p

ωt

����; ð11Þ

and the maximal quantum speed reads

vQSL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏωt=2Þ2 þ ð∂tωt=

ffiffiffi
8

p
ωtÞ2

q
ℏ cosðLtÞ sinðLtÞ

: ð12Þ

Finally, the instantaneous angle can be written as

Lt ¼ arccosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffi
ω0ωt

p
=ðω0 þ ωtÞ

q
Þ: ð13Þ

Note that the maximal speed of quantum evolution vQSL is
fully determined by the parametrization of the angular
frequency ωt. Therefore, vQSL fully characterizes the
dynamics, and we can analyze the quantum process without
having to solve the time-dependent Schrödinger equation.
In Figs. 1 we examine the case of a compression

[Fig. 1(a)] and an expansion [Fig. 1(b)] using the simple
linear ramp ωt ¼ ω0 þ ωdðt=τÞ. Interestingly, we see that
generally the QSL time is significantly larger for the
expansion. Nevertheless, we also observe that using the
shortcut can bring the QSL time to arbitrarily small values.
However, as evidenced in the insets, a smaller τ corre-
sponds to a diverging instantaneous cost. Remarkably, vQSL
and ∂tC exhibit qualitatively opposite behaviors for the two
protocols. For the compression, we see that vQSL tends to
increase as we decrease the total evolution time τ. However,
all curves collapse on top of one another toward the end of
the protocol. Conversely, in the case of an expansion the
speeds diverge as we evolve. The instantaneous cost
qualitatively behaves in the same way.

This behavior is due to the effect that these protocols
have on the energy spectrum. In the case of a compression,
the energy levels become more spaced and therefore the
first excited state becomes progressively harder to reach.
The larger gap then means that we can drive the system
comparatively faster without exciting it and the associated
cost of achieving this dynamics decreases. In the case of an
expansion the energy spacing decreases. Therefore, to
avoid excitations, the system must be driven more slowly.
Achieving this dynamics using a shortcut is then neces-
sarily accompanied by an increasingly larger cost.
The latter interpretation is further supported by consid-

ering Fermi’s “golden rule” for time-dependent perturba-
tion theory [76]. This rule states that the rate of quantum
transitions is determined by the time-integrated magnitude
of the perturbation. In TQD we seek to suppress these
transitions. This means that larger gaps have a lower
probability of observing a transition in the unperturbed
dynamics compared to smaller gaps. Hence, it is also
“cheaper” to suppress transitions in processes with larger
gaps than in denser energy spectra.
Clearly, the gap between the driven state and the rest of

the spectrum plays the most crucial role in determining
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FIG. 1. We consider the harmonic oscillator with time-
dependent frequency ωt ¼ ω0 þ ωdðt=τÞ. Main panels: QSL
time. The points correspond to the QSL times considered in
the insets. Insets: maximal speed vQSL, and instantaneous cost
∂tC, for τ ¼ 0.5 (solid), 1 (dashed), and 2 (dotted). (a) A
compression with ω0 ¼ 1 and ωd ¼ 4. (b) An expansion with
ω0 ¼ 1 and ωd ¼ −0.75.
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both the QSL and the cost of achieving finite time adiabatic
dynamics. Such an observation is of particular relevance in
critical many-body systems, where quantum phase tran-
sitions often occur at avoided crossings in the spectrum. In
the following, we examine the avoided crossing (AC) in the
Landau-Zener (LZ) model, which serves to elucidate all the
relevant features of driving the many-body Ising model
through its critical point [71] and is also relevant to the
Lipkin-Meshkov-Glick model [25].
Case study 2: Landau-Zener model.—Consider the

Hamiltonian

HLZ ¼ Δσx þ gðtÞσz; ð14Þ
where Δ is the energy splitting and gðtÞ is the time-
dependent field. As shown in Ref. [71] the Ising model
can be expressed as a series of independent LZ crossings,
and therefore the following results extrapolate to driving a
critical many-body system. For the sake of clarity we
further rescale HLZ by Δ, H0 ¼ HLZ=Δ, and hence set the
minimal energy gap to 1. The corresponding correction
term (1) is readily determined to be [18]

H1 ¼ −
g0ðtÞΔ

2ðΔ2 þ ½gðtÞ�2Þ σy; ð15Þ

which allows us to evaluate Eqs. (5) and (7).
In Fig. 2 we examine the role the energy splitting and the

total time plays in setting the maximal speed at which the
system can be driven through the AC using the simple
linear ramp gðtÞ ¼ g0 þ gdðt=τÞ [83]. In Fig. 2(a) we set
Δ ¼ 0.001 and consider τ ¼ 103 (bottom curve), which is
close to the adiabatic limit and therefore ∂tC≃ 0. We
observe that the speed steadily decreases as we approach
the AC and cusps at t ¼ 0.5τ. Comparing to the same
evolution time for a larger splitting, Δ ¼ 0.01, while the
same qualitative behavior is observed we see that the cusp
is smoothed out. This has a clear physical interpretation:
close to the adiabatic limit we can drive the system at a
finite speed far from the AC; however, the vanishingly
small gap means as we approach the AC we must drive the
system extremely slowly, approaching a speed of zero, in
order to avoid the excitations that are more likely to occur.
Increasing the splitting allows for an increase in the speed
at which we can still evolve the system effectively
adiabatically. Physically, this is the same behavior that
we found for the harmonic oscillator in Fig. 1.
Achieving the same evolution in shorter times requires

the use of the counterdiabatic field (15). In Fig. 2 we see
as the system approaches the AC the speed using the
counterdiabatic field increases. This behavior can again be
understood with the help of Fermi’s golden rule for time-
dependent perturbations [76]. The transition probabilities
for the unperturbed problem are proportional to the time-
integrated perturbation. Hence, if the relative magnitude of
the perturbation is large, i.e., if the gap is small, transitions

can be suppressed if the quantum system is prohibited from
lingering at the AC.
A further interesting feature is the clear emergence of a

“critical” region, which is delicately dependent on both the
splitting and the evolution time. It is clear in both panels that
when sufficiently far from the AC, vQSL is largely indepen-
dent of evolution time and in these regions the instantaneous
cost is close to zero. Approaching the AC requires that either
the evolution is accordingly slowed down or a counter-
diabatic field is used. This behavior is typical for critical
systems, and this is also what is at the core of the Kibble-
Zurek mechanism [84]. Far away from the critical point the
dynamics is essentially adiabatic. However, close to the
phase transition the response of the system “freezes out,” and
the so-called impulse regime emerges. The longer a system
lingers in the impulse regime the higher the chances for a
transition to occur. Suppressing excitations in the impulse
regime, however, is costly, and therefore TQD seeks to
rapidly drive the system back into the adiabatic regime.
Concluding remarks.—We have achieved three important

results. (i) We have rigorously proven the relationship
between the cost of TQDand theQSL. (ii)Wehave elucidated
the trade-off between speed and the cost of a shortcut to
adiabaticity. (iii) Finally, by illustrating our general findings
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FIG. 2. Maximal quantum speed logðvQSLÞ for the LZ model
evolved through the AC using the linear ramp gðtÞ¼0.2–0.4ðt=τÞ.
(a) Δ ¼ 0.001 and (b) Δ ¼ 0.01. Both insets show the corre-
sponding instantaneous cost ∂tC.
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with two experimentally relevant systems, we have high-
lighted the crucial role of the gap for the cost and the speed
withwhich a shortcut can be facilitated. In particular, we have
found that effectively instantaneous yet adiabatic dynamics
can be achieved at the expense of an infinite cost.
Interestingly, in its original formulation, TQD does not

provide any physical intuition as to why it can achieve such
fast dynamics. Furthermore, it is reasonable to assume that
even using TQD, a small energy gap would require slower
driving. Our results show that the shortcut comes from the
increased allowed speed of evolution and, quite counter-
intuitively, TQD encourages faster driving when the energy
gap closes. Such an insight could be highly relevant for
experimental implementations of TQD [85,86].
Our analysis of the LZ model extrapolates to many

critical spin systems, such as the Ising and the LMGmodel.
In any system, for which the gap vanishes as N → ∞, our
findings for smallΔ qualitatively apply (see also Ref. [87]).
Hence, our analysis is particularly important for current
efforts in building and improving quantum computing
hardware [72,74,75]. Finally, there are two immediate
directions for generalizations of our results: open systems
[88] and non-Schrödinger dynamics [15]. While we expect
such an intuitive trade-off to persist, a reasonable notion of
a thermodynamic cost will have to be found first.
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