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Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shor’s
factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability
for near-term, nonfault tolerant, quantum devices. Here we report experimental results demonstrating that
this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum
phase estimation and use it to simulate molecular energies on a silicon quantum photonic device. The
approach is verified to be well suited for prethreshold quantum processors by investigating its superior
robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a
promising route to unlock the power of quantum phase estimation much sooner than previously believed.
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Introduction.—Quantum algorithms promise exponential
advantages over their classical counterparts, allowing the
possibility to accomplish tasks otherwise unachievable on a
classical computer [1,2]. A fundamental tool in quantum
computing is the quantum phase estimation algorithm
(PEA), necessary for harnessing many of its main applica-
tions, e.g factorization of large numbers [1,3-6] and sim-
ulation of molecular properties [7-11]. An efficient
implementation of PEA will thus be a crucial subroutine
for quantum computers. Kitaev’s iterative phase estimation
algorithm (IPEA) [12] and its adaptive version [13,14] have
been employed in proof-of-principle implementations of
PEA, as they solely rely on a relatively small number of
qubits and logic gates [4-10]. However, they require
exponentially long coherence of the quantum hardware
and are very susceptible to experimental noise [9,14-16].
This means that conventional quantum phase estimation
algorithms rapidly become impractical if the quantum
computer is not fully error corrected, limiting the feasibility
in near-term, pre-fault-tolerant quantum machines.

A new efficient Bayesian phase estimation algorithm,
called rejection filtering phase estimation (RFPE), has been
recently proposed to overcome this issue [16]. The algo-
rithm applies an approximate form of Bayesian inference
to efficiently estimate the correct eigenphase. Theoretical
results suggest that RFPE has a number of desirable
features: high robustness to noise, a well-motivated con-
fidence interval for the estimated eigenphase, minuscule
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memory requirement for the classical control, and speed-up
over the standard IPEA.

The potential of RFPE to exhibit these properties has
so far been suggested by numerical simulations of the
algorithm [16]. Experimental evidence with realistic noise
sources is now required to demonstrate the high perfor-
mance of the approach, potentially vindicating RFPE as a
scalable, practical, and quadratically faster alternative to
other statistical methods [17,18].

Here we exploit a fully reconfigurable silicon quantum
photonic device to investigate the experimental viability of
RFPE. We compare and contrast the performance of both
RFPE and IPEA under the action of different controllable
experimental noises. Specifically, we find experimental
evidence that RFPE is robust against realistic sources of
errors, making it very appealing for near-term useful
applications. Our results are made possible by our ability
to generate and manipulate single photons states on-chip
via an arbitrary controlled-unitary operation as well as the
high level of precision and reconfigurability offered by the
photonic chip.

Phase estimation.—The goal of phase estimation is, given
a unitary U/ and a quantum state lw) , to learn an eigenvalue
e’ of U within the support of |) . Standard algorithms work
by interfering paths in which either 1 or /7 is applied to [y) ,
for integer values of j, and then recombining the paths
together to allow them to interfere [3]. Iterative phase
estimation works by pooling the results of many such experi-
ments and using a classical inference algorithm to estimate
an eigenphase of U from the resultant interference pattern.

IPEA allows eigenvalues of U to be learned quadratically
faster than by statistical sampling and requires exponen-
tially fewer measurements. However, it typically requires
long evolution times which can reduce its utility in prefault
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(a) Quantum circuit for standard iterative and Bayesian phase estimation algorithms. (b) Experimental setup and the integrated

silicon quantum photonic device. The quantum chip can perform any controlled-U(2) operation and any single-qubit state preparation
and analysis. Photons are produced and guided in the silicon waveguides (black wires) and reconfigurably controlled by thermo-optical
phase shifters. Coherent light was used to generate photons and superconducting nanowire detectors were used for the detection, both
coupled to the chip through lensed-single mode fibers. The implementation of the algorithms was achieved by interfacing the quantum

device with a classical CPU.

tolerant hardware [12—14]. The most commonly used IPEA
algorithm works by inferring each of the bits in a binary
expansion of the eigenphase ¢ in reverse order [12—14].
The method uses the circuit in Fig. 1(a), where the
measurement on the control qubit gives output 0 or 1 with
probabilities  cos?(zM[¢p —60]) and sin®(zM[p — 0]),
respectively. As each bit is learned iteratively, the algorithm
applies a fixed policy for updating M and 6 (see
Supplemental Material [19]).

RFPE is in many ways simpler. This Bayesian approach
uses a Gaussian probability distribution P(¢) (the prior)
representing the confidence that the current hypotheses is
the correct eigenphase. The result of each new measure-
ment is used to update the mean y and standard deviation o
according to Bayes’ theorem, approximated with rejection
sampling (see Supplemental Material [19]). Specifically, a
host of particles are drawn from the prior distribution and
then probabilistically discarded based on the likelihood
function. The remaining samples model the posterior
probability distribution, which becomes the new prior.
Since the number of surviving particles decreases expo-
nentially, the posterior distribution is refit to a new
Gaussian at each step and fresh particles added, drawn
from this new distribution. Rather than learning each of the
bits of ¢ individually, the RFPE algorithm gains informa-
tion about every bit simultaneously.

In more detail, if an outcome E € {0, 1} is obtained from
an experiment with parameters M and 6, the likelihood
function for the host of particles {x;} is calculated:

cos’[Mz(x; —0)]/x E=0

P(E|X,';Ma9)/’<: {SiHZ{M”(xi_e)]/K E=1,

where « is a rescaling constant [16]. Particles from the prior
are discarded probabilistically based on this function. In
order to maximize the information gain at each step, new
values of M and 6 can be extracted from the prior
distribution using various optimization methods. A near-
optimal choice is provided by particle guess heuristics
[22,23], giving O~ P(¢) and M = [1.25/c]. If the
likelihood function fails to describe the data (due to
experimental noise) then the algorithm estimates the best
model for the experimental results within the assumptions,
and gives a firm estimate of the uncertainty in the
eigenphase. While in standard IPEA any error that occurs
in inferring a bit cannot be corrected in subsequent
algorithm steps, RFPE does not suffer this issue because
it does not try to infer the bits sequentially. While these
expectations have been born out in simulation [16], they
have not been verified in practice. We provide such
verification below using an integrated quantum photonic
device. Further details for RFPE and IPEA can be found in
Supplemental Material [19].

Integrated quantum photonic device.—Silicon quantum
photonics have emerged as a promising approach for the
realization of quantum hardware, since, in principle, all the
necessary photonic components (sources, circuits, filters,
and detectors) for quantum information processing can be
integrated on a single platform [24]. We developed a
quantum photonic device in silicon waveguides for the
experimental implementation of RFPE, shown in Fig. 1(b).
The chip was manufactured on a standard silicon-on-
insulator platform and is capable of performing arbitrary
two-qubit controlled unitary operations. Using spontaneous
four-wave mixing, photon pairs were created in two spiral
sources pumped with =20 mW bright light near 1550 nm
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wavelength [25]. Separating the photons by multimode
interferometer beam splitters (BS) and swapping the two
modes by a waveguide crosser yield a maximally
entangled two-photon postselected state ( |0) ¢ [0) 7 +
1) ¢ 1) 7)/v/2, where |0) (|1)) indicates the photon
state either in its upper or lower spatial mode [26,27],
whereas C(T) subscript refers to the control (target)
register. Two additional spatial modes are then added to
the target register, obtaining a path encoded qubit for each
of the two modes of the target wave function. After an
initial state preparation |¢);, each qubit is manipulated
with a separate transformation, depending on which path
the photon is traveling on the identity 1 for the upper modes
(the ones corresponding to a |0) ) and an arbitrary unitary
V for the bottom modes (the ones corresponding to a
|1) ¢). The path information is erased by two BSs and the
state is finally postselected obtaining the equivalent photon
count statistics of an arbitrary control-unitary operation
(10) c® [#) 7+ [1) c®V |h) 7)/V/2 [10,28]. The quan-
tum logic of Fig. 1(a) is completed by performing a single
qubit operation on the control photon. All the processes
required for state preparation, manipulation, and measure-
ment are achieved through thermo-optical phase shifters
and Mach-Zehnder interferometers, as shown in Fig. 1(b)
[27,29]. Controlling the electric power supplied to the
phase shifters, each phase ¢ can be driven with an average
precision of =0.01 rad (see Supplemental Material [19]).
Finally, photons were detected by superconducting nano-
wire single photon detectors (SNSPD) and coincidence
counts obtained by a time interval analyzer. The photon
statistics were used to measure the projectors IT(0, 1) on the
computational basis of the photonic qubits. The Bayesian
update and changes to the controls of the quantum device
required by RFPE can be calculated and fed to the quantum
system using an interfaced classical computer.
Experimental results.—The rapid reconfigurability and
the high precision of the silicon photonic device were
crucial to the practical implementation and testing of RFPE.
As is usual in photonic experiments, where measurements
provide probability distributions rather than single-shot
data, the value of E was determined by the majority voting
method on the projective measurement statistics for both
RFPE and IPEA (see Supplemental Material [19]). For the
stochastic representation of the prior, 1000 particles was
found to be reliable. The initial prior distribution was set to
a Gaussian (7, #%), which approximates a uniform prior.
In Fig. 2(a) we report the results from a single RFPE run,
which demonstrates that the estimation converges expo-
nentially to the true eigenphase. For this case an error as
low as 2.4 x 107 rad is achieved within 50 experiments on
the quantum device. This error is in good agreement with
the standard deviation of the final posterior Gaussian
distribution [=4.2 x 10~* rad after 50 experimental steps,
see the inset of Fig. 2(a)], thus confirming that the
algorithm provides a reliable uncertainty estimate. We
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FIG. 2. (a) Convergence of RFPE to the true phase value
2n¢hy = 4.8741 rad related to the energy of the dissociated H,
molecule. The initial prior distribution is A/ (z, #%). Data points
show an exponential shrink of the error, compatible with
simulations (blue line) of the device performance averaged over
1000 runs of the RFPE algorithm (shaded area: 67.5% credible
interval). The dashed black line denotes the convergence of the
standard IPEA using the parameters discussed in the main text.
Inset: convergence of the phase estimation to ¢ (red line), where
errors are evaluated using the s.d. of the prior distribution. Error
bars are obtained from the standard deviation of the median.
(b) Bonding energies of the H, molecule for various atomic
distances using RFPE with 50 steps. Energy estimations are
achieved within chemical accuracy. Errors are smaller than the
markers and neglected in the plot for more clarity. The dashed
line represents theoretical energies.

remark that this feature is not present in other phase
estimation techniques, which do not provide a rigorous
estimation of the phase uncertainty that arises in non-fault-
tolerant devices [16]. A possible strategy for obtaining such
uncertainty estimates from IPEA would be to determine the
mean and the standard deviation of the measured eigen-
phase from repeated experiments. Figure 2(a) shows that
when adopting this strategy with a reasonable cardinality
for the experiments, 10 for the curve reported, RFPE
outperforms IPEA.

To extensively test how RFPE performs in key applica-
tions, we scanned the energy of molecular H, for different
atomic separations, using 50 iterations of RFPE for each
eigenphase evaluation. The eigenstates of the molecular
Hamiltonian are mapped into a the qubit basis using the
Jordan-Wigner transformation and the eigenphases are
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directly related to the binding energy [7,9—11]. As shown in
Fig. 2(b), the estimated energies match the theoretical
values with high precision. The average error for the data
set is 0.72 kCal/mol, providing a precision higher than
chemical accuracy (=1 kCal/mol).

The main advantage of the Bayesian approach over
traditional methods comes from its expected reliability
on non-fault-tolerant devices. Here we investigate
experimentally the robustness of the protocol against
two main controllable sources of noises: gate errors and
decoherence.

The infidelity of unitary operations is a well-known
problem existing in quantum hardware, and is typically
given by a noisy control and imperfect manufacture and
calibration of the components. On integrated quantum
photonic devices it is mainly due to control noise and
residual crosstalk of the phase gates, which are expected to
occur on the device in Fig. 1 [10]. Our electronic phase-
shifter’s driver allows us to precisely control the thermo-
optical phase gates as residual thermal cross talk can be
compensated by further calibration (see Supplemental
Material [19]). The high controllability allows us to add
a tunable level of noise on the phase gates to study the
robustness of RFPE. This is achieved by replacing the
correct phases ¢ required to implement the unitary trans-
formation with synthetic values ¢ sampled from a Gaussian
distribution ¢ ~ N (@, Ophase)- The parameter o, mimics
a Gaussian noise in the phases, which in turn introduces a
controllable noise in the fidelity of both the implemented
state preparation and the unitary evolution. Figure 3(a)
shows the convergence of both RFPE and IPEA scanning
Ophase UP t0 0.55 rad, corresponding to average state fidelity
94% and gate fidelity 91% expected in the chip (see
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FIG. 3.

Supplemental Material [19]). We report the performance
of RFPE with 100 steps, compared to a 16-bit IPEA,
averaged over 10 runs to estimate the error bars, i.e., 160
total experiments per data point. We remark that since a
reasonable error bar estimation requires a higher number of
experiments for IPEA than RFPE, the relative rates of
convergence are not immediately obvious from these
figures. Rather, these plots illustrate how the performance
of each algorithm is affected by increasing errors, to
compare their robustness to noise. For o, > 0.05 rad
IPEA dramatically decreases in accuracy and becomes
quickly unreliable. This occurs because while the majority
voting scheme provides error resilience for small error
rates, it can diverge rapidly once the error rate crosses a
threshold (see Supplemental Material [19]).

On the other hand, in this regime the performance of
RFPE is initially only slightly affected, maintaining a very
high level of precision even when IPEA fails. This is
expected because RFPE does not make hard decisions
about bits as each experiment yields information about all
bits at once. Thus errors are unlikely to be critical. In order
for RFPE to be substantially affected we require oppqqe
higher than 0.3 rad, a value much higher than the actual
experimental noise in our device.

Decoherence is an important limitation in many quantum
computing experiments but it plays a minor role in
integrated quantum photonics. It must then be introduced
artificially in our experiment. In order to simulate it,
coincidence counts provided by the SNSPDs for the
I1(0) and TI(1) projectors were progressively flattened
out by classical postprocessing and combined with
Poissonian noise in the measurements. In agreement with
the depolarizing noise model we mimicked the presence of
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Effects of different experimental noises on phase estimation strategies. (a) Infidelity of quantum operation. Each of the correct

phases @, for the phase gates is synthetically replaced with a Gaussian distributed ¢; ~ N (@;, Ophase)» Where o, Tepresents a noise in
the phases. (b) Decoherence. For IPEA data, experiments were repeated 10 times with 16-bit accuracy to evaluate median error and error
bars, while the RFPE data were collected from a single run, after 100 measurements, and directly used to evaluate the error and
uncertainty within the algorithm. Error bars for the estimated phase represent in both plots either a 67.5% credible region for RFPE,
either a 67.5% confidence interval for IPEA. In the cases where error bars are smaller than the markers they have been omitted for clarity.
Points are experimental data and dashed lines are simulations averaged over 1000 runs. The simulations take into account the
characterized residual phase noise in the device.
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FIG. 4. Experimental data (points) and simulation (lines) of the
behavior of RFPE under different decoherence times 7. Shaded
areas represent a 67.5% credible interval from data simulated
averaging over 500 runs of RFPE.

a normalized decoherence time 7, (see Supplemental
Material [19]) such that
1 —eMT

5 )
where P(D|¢) is the data obtained from the photon
coincidence counts for the outcome D € {0, 1}. We intro-
duce this noise model while processing online the output
data during the iterative process, thus affecting the choice
of the experiments. In this way it is possible to simulate the
behavior of RFPE and IPEA in systems that are prone to
this model of decoherence.

We studied the action of the depolarizing noise up to
T, = 4 for both IPEA and RFPE, as shown in Fig. 3(b).
The performance of IPEA has a substantial and sharp
deterioration at T, close to 32, whereas the median error
of 100-step RFPE decreases only polynomially with
1/T,, maintaining an error O(1072) even in the regime
where conventional IPEA fails to provide any reliable
estimate of the phase. In the presence of characterized
depolarizing noise an optimized value for M is given by
min([1.25/6],T,) [16], which, however, implies that,
when decoherence is significant, the performance of
RFPE degrades significantly. This behavior is exhibited
by the experimental data in Fig. 4, where the convergence
of RFPE is reported under the action of various 7,. We
observe that RFPE ceases to learn exponentially quickly
when 1/0 ~T,, after which the algorithm continues to
learn at a polynomial rate, unlike IPEA [16].

Conclusion.—Our work shows how the precision and
controllability developed in quantum technologies, here in
particular integrated photonics, allows us to go beyond the
basic proof-of-principle demonstrations of quantum algo-
rithms and to enter a regime where they can be extensively
tested and compared. We experimentally verified the
Bayesian phase estimation algorithm on a fully program-
mable silicon quantum photonic device and demonstrated
its superior performance in presence of noise. Although in

P'(D|p) = e™™/TP(D|¢) +

this work the experiment is performed using a small-scale
unitary and a photonic device, more complex future
implementation can be efficiently performed on any scal-
able quantum architecture. The Bayesian approach remark-
ably lowers the requirements for the implementation of
quantum phase estimation on pre-fault-tolerant devices,
showing a new route for practical and useful quantum
information processing in the near future. We remark that
the implications of the Bayesian approach to phase esti-
mation are not limited to photonic implementations: all
other quantum information processing platforms, e.g.,
superconducting qubits and ions traps, can benefit as well
from its enhanced performance and noise resilience.
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