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Quantum mechanics forbids perfect discrimination among nonorthogonal states through a single shot
measurement. To optimize this task, many strategies were devised that later became fundamental tools for
quantum information processing. Here, we address the pioneering minimum-error (ME) measurement and
give the first experimental demonstration of its application for discriminating nonorthogonal states in high
dimensions. Our scheme is designed to distinguish symmetric pure states encoded in the transverse spatial
modes of an optical field; the optimal measurement is performed by a projection onto the Fourier transform
basis of these modes. For dimensions ranging from D ¼ 2 to D ¼ 21 and nearly 14 000 states tested, the
deviations of the experimental results from the theoretical values range from 0.3% to 3.6% (getting below
2% for the vast majority), thus showing the excellent performance of our scheme. This ME measurement is
a building block for high-dimensional implementations of many quantum communication protocols,
including probabilistic state discrimination, dense coding with nonmaximal entanglement, and crypto-
graphic schemes.
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Quantum mechanics establishes fundamental bounds to
our capability of distinguishing among states with non-
vanishing overlap: if one is given at random one of two or
more nonorthogonal states and asked to identify it from a
single shot measurement, it will be impossible to accom-
plish the task deterministically and with full confidence.
This constraint has deep implications both foundational,
underlying the debate about the epistemic and ontic nature
of quantum states [1–4], and practical, warranting secrecy
in quantum key distribution [5,6]. Beyond that, the problem
of discriminating nonorthogonal quantum states plays an
important role in quantum information and quantum
communications [7].
A wide variety of measurement strategies have been

devised in order to optimize the state discrimination
process according to a predefined figure of merit [7].
The pioneering one was the minimum-error (ME) meas-
urement [8–10] where each outcome identifies one of the
possible states and the overall error probability is mini-
mized. Other fundamental strategies conceived later
[11–17] employ the ME discrimination in the step next
to a transformation taking the input states to more dis-
tinguishable ones [18], which enables us to identify them
with any desired confidence level (within the allowed
bounds) and a maximum success probability. Nowadays,
the ME measurement is central to a range of applications,
including quantum imaging [19], quantum reading [20],
image discrimination [21], error correcting codes [22], and
quantum repeaters [23], thus stressing its importance.
Closed-form solutions for ME measurements are known

only for a few sets of states. One of these is the set of

symmetric pure states (defined below) prepared with equal
prior probabilities [24]. Discriminating among them with
minimum error sets the bounds on the eavesdropping in
some quantum cryptographic schemes [25] and is crucial
for optimal deterministic and probabilistic realizations of
protocols like quantum teleportation [26], entanglement
swapping [27], and dense coding [28], when the quantum
channels are nonmaximally entangled.
Experimental demonstrations of ME discrimination have

been provided in continuous variables for two coherent
states [29], and in two-dimensional Hilbert spaces for sets
of two [30], three, and four states [31] encoded in the light
polarization, and two states encoded in the 14N nuclear spin
[32]. It is of key importance to extend this to high-
dimensional quantum systems (qudits) due to the many
advantages they offer over qubit-based applications. Qudits
provide an increase in the channel capacity for quantum
communication [33], and a higher error rate tolerance and
improved security in quantum key distribution [34–36].
Moreover, they are a necessary resource for fundamental
tests of quantum mechanics, like contextuality tests [37],
and for lowering the detection efficiencies required for
nonlocality tests [38]. Therefore, the ability to perform ME
measurements for qudit states will enhance their potential
of use in many of these practical applications. It will also be
essential for exploring novel protocols of quantum-state
discrimination [14–16], bringing positive impacts for
quantum communications.
In this Letter, we report the first experimental demon-

stration of ME discrimination among nonorthogonal states
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of a single qudit. This is done for equally likely symmetric
states in dimensions D ranging from D ¼ 2 to D ¼ 21.
Using states encoded in D transverse spatial modes of an
optical field, known as spatial qudits [39], we carried out
the experiment for every dimension in that range in a total
of 1851 sets of states. Up to small deviations caused by
unavoidable experimental imperfections, our scheme is
shown to be optimal, achieving the minimum error prob-
ability allowed by quantum mechanics.
To outline the problem, consider a set of N quantum

states fjψ jigN−1
j¼0 spanning a D-dimensional Hilbert space

HD, with D ≤ N, defined by

jψ ji ¼
XD−1

n¼0

cnωjnjni; ð1Þ

where ω ¼ expð2πi=NÞ, the cn’s are real and nonnegative
(
P

nc
2
n ¼ 1), and fjnigD−1

n¼0 is an orthonormal basis in HD.
They are symmetric under Û ¼ P

D−1
l¼0 ωljlihlj since jψ ji ¼

Ûjψ j−1i ¼ Ûjjψ0i and jψ0i ¼ ÛjψN−1i. If each of these
states is prepared with the same a priori probability 1=N,
they can be identified with minimum error through the
measurement [24]

Π̂ME
k ¼ F̂N jkihkjF̂−1

N ≡ jμkihμkj; ð2Þ

where k¼0;…;N−1, and F̂N¼ð1= ffiffiffiffi
N

p ÞPN−1
m;n¼0ω

mnjmihnj
is the discrete Fourier transform acting on an N-dimensional
Hilbert space HN . For N ¼ D (linearly independent states),
this is a projective measurement onHD. ForN > D (linearly
dependent states), this is a projective measurement on HN
that realizes the positive operator valued measure (POVM)
for ME discrimination on HD. This procedure is based on
Neumark’s theorem [10] for implementing POVMs by
embedding the system space HD into a larger Hilbert space
HN given by the direct sum HD ⊕ HN−D, where HN−D
represents theN −D unused extra dimensions of the original
system [40]. From Eqs. (1) and (2), the probability of
obtaining an outcome δk (associated with Π̂ME

k ) if the
prepared state was jψ ji is given by Pðδkjψ jÞ ¼ jhμkjψ jij2.
Thus, the maximum overall probability of correctly identify-
ing the state will be

Pcorr ¼
1

N

XN−1

j¼0

Pðδjjψ jÞ ¼
1

N

�XD−1

j¼0

cj

�2

: ð3Þ

Equivalently, Perr ¼ 1 − Pcorr will be the ME probability.
The experimental setup used to optically demonstrate the

ME discrimination among symmetric states is shown and
described in Fig. 1(a). We use a bright beam from a single-
mode laser as our light source, which is usual in most
optical implementations of quantum-state discrimination
[30,31,48,49]. The transverse spatial profile of this beam is

proportional to the transverse probability amplitude of a
single-photon multimode field. With the procedure
described next, it will mimic the quantum state (1) of a
single-photon qudit. The arrangement within the light
shaded region enables the preparation of arbitrary pure
states of spatial qudits, as recently demonstrated [50]. This
is possible by modulating the transverse spatial profile of
the incoming field as follows: an array ofD rectangular slits
with a blazed diffraction grating inside each one is
displayed on the screen of the phase-only spatial light
modulator. [Figure 1(b) shows a typical phase mask for
D ¼ 3.] In the back focal plane of a converging lens, the
beam portions impinging within the slit zones are diffracted
into different orders (0;�1;…); the portions impinging
outside the slit zones go to the zeroth diffraction order. If
we choose one of the high orders, say þ1, to prepare the
states, the amplitude of their complex coefficients is
obtained by controlling the amount of light diffracted by

FIG. 1. (a) Experimental setup. Our light source is a single-
mode diode laser operating at 691 nm. The beam profile was
spatially filtered, expanded, and collimated so that it was
approximately a plane wave with constant phase across the
screen of the spatial light modulator (SLM). A half-wave plate
(HWP) followed by a polarizer provided a clean vertical
polarization (the working direction of the SLM) and acted as a
variable attenuator to avoid saturation of the detectors. The first
50∶50 beam splitter (BS) enabled the normal incidence of the
beam onto the reflective phase-only SLM (Holoeye PLUTO).
The modulated beam was transmitted through a converging lens
(f ¼ 30 cm) and split in two arms by the second BS. At each arm
a slit diaphragm was placed nearly at the focal plane of the lens in
order to select the þ1 diffraction order where the states were
prepared. Note that this BS is not required for the ME meas-
urement; we used it to assist the characterization of the prepared
states [41]. In both arms intensity measurements were carried out
with CMOS cameras (Thorlabs DCC1545M). The ME measure-
ment was performed in the transmitted arm (dashed box), where
the camera was placed at the focal plane of the lens, right behind
the slit diaphragm; in the reflected arm, the light distribution was
imaged onto the other camera [41]. The SLM and both cameras
were connected to a computer that controlled the former and
collected and stored data from the latter. (b) Schematic of the state
preparation and ME measurement stages (see text for details).
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each slit to that order, which is a function of the phase
modulation depth of the gratings. The relative phases are
set either by adding a constant phase value to the gratings
[50] or by lateral displacements of them [51] (here we
interchanged between these two procedures [41]). Finally, a
slit diaphragm filters out the þ1 diffraction order from the
others and the emerging light will be a coherent super-
position of the which-slit modes fjnigD−1

n¼0 modulated by
proper complex coefficients, thus representing the desired
qudit state of Eq. (1). A schematic of the preparation stage
is shown in Fig. 1(b). The inset presents an intensity
measurement at the image plane for a state jψ ji prepared
with the phase mask shown there.
The ME measurement is performed through spatial

postselection. Let Π̂ðx; zÞ ¼ jμðx; zÞihμðx; zÞj denote the
measurement operator associated with a pointlike detector
in the transverse position x and a longitudinal distance
z ∈ ½f; 2f� from a converging lens of focal length f. In
an N-dimensional space this detector postselects the state
jμðx; zÞi ∝ P

N−1
l¼0 φlðx; zÞjli, where the complex coeffi-

cients φlðx; zÞ are given by the Fresnel diffraction integral
of slit l calculated in ðx; zÞ [52]. If the detector is placed at
the focal plane of the lens (z ¼ f), it will postselect the state
jμðx; fÞi ¼ ð1= ffiffiffiffi

N
p ÞPN−1

l¼0 ω
xdNl=λfjli, where d is the slit

separation and λ is the light wavelength. Now, consider an
array of N detectors at z ¼ f distributed along the trans-
verse positions xk ¼ −λfmk=dN, where k ¼ 0;…; N − 1,
and mk ¼ k if 0 ≤ k ≤ N=2 or mk ¼ k − N if N=2 < k ≤
N − 1 [41]. It is easy to see that each detector in this array
postselects the state jμðxk; fÞi ¼ F̂N jki. From Eq. (2), we
have

Π̂ðxk; fÞ≡ Π̂ME
k ; for xk ¼ −λfmk=dN: ð4Þ

Therefore, with such a detection scheme we can implement
the ME discrimination of symmetric states. From the

discussion following Eq. (2), for N > D, the D-slit array
can be viewed as an array of N slits where D input modes
are used to encode the states and the remaining N −D
modes are in their respective vacuum states. The propaga-
tion through the lens system provides the unitary coupling
between these two subspaces and the projective measure-
ment (4) accomplishes the optimal POVM.
In our setup, the ME measurement is shown in the

dashed box of Fig. 1(a). Figure 1(b) shows a schematic of
this stage with an example of D ¼ 3 and N ¼ 5. Note that
we used the same lens to assist the preparation and
measurement stages described above. This was done to
simplify the setup, as our main goal was to demonstrate the
optimal discrimination process. The same results would be
achieved if the detection were performed after letting the
spatial qudit state propagate through an arrangement of
lenses taking the Fourier transform of the which-slit modes
(possibly having to rescale the xk’s).
Our implementation comprised both linearly indepen-

dent and dependent states in every dimension from D ¼ 2

to D ¼ 21. Their coefficient amplitudes, fcngD−1
n¼0 in

Eq. (1), were parametrized as follows. For D ¼ 2,
c0 ¼ cosðθ=2Þ with θ ∈ ½0; π�; for D ¼ 3, c0 ¼
sinðθ1=2Þ cosðθ2=2Þ and c1 ¼ sinðθ1=2Þ sinðθ2=2Þ with
θ1ð2Þ ∈ ½0; π�. These hyperspherical coordinates enabled
the experiment to be performed for arbitrary symmetric
states in those dimensions. However, for D ≥ 4, this
approach would prevent us to represent the results in a
single plot. Thus, for D ¼ 4 to 9 we defined c2n ∝
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðn − j0 þ 1Þ=ðD − j0Þ�αD
p

if n ≥ j0, and c2n ∝ 1 if
n < j0, where j0 ¼ 1;…; D − 1 and α ∈ ½0; 1�. Using only
two parameters ðj0;αÞ we were able to test a large diversity
of sets of symmetric states in those dimensions and, at the
same time, to obtain surfaces for the probabilities in Eq. (3)
with good contrast [41]. This latter aspect ensured that the
tested sets were well distinguishable from one another,

FIG. 2. Optimal probability of correctly identifying the states Pcorr [Eq. (3)] as a function of their coefficient parameter(s) (see text).
Experimental results (squares and points) and theoretical predictions (solid lines and surfaces) of ME discrimination for N states in
dimension D (N ×D): (a) 2 × 2, (b) 3 × 2, (c) 7 × 2, (d) 3 × 3, (e) 5 × 3, (f) 6 × 4, (g) 5 × 5, (h) 12 × 8, (i) 9 × 9.
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since Pcorr in the ME discrimination is also a measure of
distinguishability among sets of states [53]. As D gets
larger, to experimentally build up those surfaces became
very time consuming. Thus, for D ¼ 10 to 21 we found it
sufficient to generate a few sets of states (three for each D)
to perform the discrimination. In order to avoid any bias in
our choice, the coefficients were randomly selected [54].
With the preparation and measurement stages outlined

above, the experiment is carried out in the following way:
we first define the set of symmetric states by specifying D,
N, and the coefficient amplitudes fcngD−1

n¼0 [Eq. (1)].
Afterwards, we prepare one state of this set and perform
the discrimination process on it by measuring, with a
CMOS camera, the light intensity at the N transverse
positions defined in Eq. (4). This is exemplified in
Fig. 1(b). The measured intensities are integrated over y
[this direction, also shown in Fig. 1(b), is not relevant for
us], the background noise is subtracted, and a small
compensation for the detection efficiency due to diffraction
is applied [41]. These procedures are repeated for each state
in the set. Denoting Ikj as the resulting intensity at detector
k when the input state is jψ ji, the probability of identifying
it (correctly or incorrectly) is obtained as ½Pðδkjψ jÞ�expt ¼
Ikj=

P
N−1
l¼0 Ilj, from which we estimate the overall prob-

ability of correct identification, Pcorr, using the expression
in the middle of Eq. (3).
In total, the experiment was performed for 1851 sets of

symmetric states, comprising nearly 14 000 different states
[41]. Figures 2 and 3 show a collection of our results for the

values of N and D specified there. In Fig. 2 we plot Pcorr as
a function of the parameter(s) of the state coefficients
defined earlier. The experimental results are given by the
squares and points while the theoretical predictions—
computed from the rightmost side of Eq. (3)—by the solid
curves and surfaces. The error bars in these graphs were
smaller than the size of the data points. In Fig. 3 we plot
Pðδkjψ jÞ, defined above Eq. (3). Each graph shows these
probabilities for a single set of states settled by the
coefficient amplitudes shown in the inset. The red stems
are the experimental results and the empty bars the
expected theoretical values given by ½Pðδkjψ jÞ�theor ¼
jhμkjψ jij2. We observe in both figures the close agreement
between theory and experiment.
For each of the tested sets we calculated the root-

mean-square deviation (RMSD) of the results from the
optimal theoretical values. With the residuals defined by
Rkj ≡ ½Pðδkjψ jÞ�theor − ½Pðδkjψ jÞ�expt, we have RMSD ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N−1
j;k¼0 R

2
kj=N

2
q

. Figure 4(a) shows a histogram of the

obtained deviations, which ranged from 0.3% to 3.6%. For
80% of the sets the RMSDs were below 2%. The errors in
our experiment are caused mainly by aberrations of the
optical elements and the imperfect preparation of the input
states, which is, possibly, responsible for the largest
deviations. For instance, examining the results of
Fig. 2(i), it can be seen that the worse ones occurred for
j0 ¼ 1, 2 and some values of α ≠ 0. For this particular
realization, we plot in Figs. 4(b) and 4(c) the average
fidelities of preparation for the states in each set and the
RMSD×ð−1Þ, respectively. It is clearly observed that the
largest deviations from the theoretical predictions corre-
spond to the sets of states with lower fidelities. Despite all
this, the deviations in our experiment, as shown in Fig. 4(a),
were considerably small taking into account that exper-
imental implementations are always subjected to errors, the
wide variety of states tested, and the high dimensions we
have explored. Therefore, it is safe to say that our scheme is
indeed optimal.
In conclusion, we have presented the first experimental

demonstration of minimum-error discrimination among
nonorthogonal states of a D-dimensional qudit. Our

FIG. 3. Probabilities Pðδkjψ jÞ in the ME measurement (2) for a set of states defined by the coefficient amplitudes fcngD−1
n¼0 shown in

the inset. Experimental results (red stems) and theoretical predictions (empty bars) for discrimination among N states in dimension D
(N ×D): (a) 15 × 11, (b) 13 × 13, (c) 23 × 17, (d) 21 × 21.

FIG. 4. (a) Histogram with the distribution of the root-
mean-square deviations of the experimental results from the
theoretical values. (b) Average fidelities of state preparation and
(c) RMSD × ð−1Þ for the results shown in Fig. 2(i).
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measurement scheme was designed to distinguish sym-
metric pure states, an important resource in quantum
information [12–16,18,24–28]. Envisaging its application
to quantum protocols, a single photon implementation of
this experiment would require a source with a sufficiently
large transverse spatial coherence, in order to prepare high-
quality states. The preparation and measurement stages
would be exactly the same described earlier. The detector
array, however, will be required to have single-photon
counting capability. Some candidates for this include
charged-coupled device cameras (CCDs), either an inten-
sified CCD [55] or an electron multiplying CCD [56], and
also single-photon avalanche diode arrays based on CMOS
technology [57,58].
The ME measurement is central not only to many

applications in quantum information, but also to put forward
the implementation of “complete” probabilistic discrimina-
tion protocols in high dimensions: by iterating the discrimi-
nation process in case of failed attempts [26], one can
significantly increase the information gain about the input
states. Our demonstration constitutes a building block for
future realizations of these protocols and, accordingly, will
benefit a variety of tasks in high-dimensional quantum
information processing [25–28].

This work was supported by the Brazilian agencies
CNPq (Grant No. 485401/2013-4), FAPEMIG (Grant
No. APQ-00149-13), and PRPq/UFMG (Grant
No. ADRC-01/2013). M. A. S-P., O. J., and A. D. acknowl-
edge financial support fromMillennium Scientific Initiative
(Grant No. RC130001) and FONDECyT (Grants
No. 1140635 and No. 11121318).

*msolisp@udec.cl
†lneves@fisica.ufmg.br

[1] R. W. Spekkens, Phys. Rev. A 75, 032110 (2007).
[2] M. S. Leifer, Phys. Rev. Lett. 112, 160404 (2014).
[3] C. Branciard, Phys. Rev. Lett. 113, 020409 (2014).
[4] M. Ringbauer, B. Duffus, C. Branciard, E. G. Cavalcanti,

A. G. White, and A. Fedrizzi, Nat. Phys. 11, 249 (2015).
[5] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.

Phys. 74, 145 (2002).
[6] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J.

Cerf, and P. Grangier, Nature (London) 421, 238 (2003).
[7] For reviews of quantum-state discrimination see A. Chefles,

Contemp. Phys. 41, 401 (2000); S. M. Barnett and S. Croke,
Adv. Opt. Photonics 1, 238 (2009); J. A. Bergou, J. Mod.
Opt. 57, 160 (2010).

[8] A. S. Holevo, J. Multivariate Anal. 3, 337 (1973).
[9] H. P. Yuen, R. S. Kennedy, and M. Lax, IEEE Trans. Inf.

Theory 21, 125 (1975).
[10] C. W. Helstrom, Quantum Detection and Estimation Theory

(Academic, New York, 1976).
[11] I. D. Ivanovic, Phys. Lett. 123A, 257 (1987).
[12] A. Chefles and S. M. Barnett, Phys. Lett. A 250, 223 (1998).

[13] S. Croke, E. Andersson, S. M. Barnett, C. R. Gilson, and J.
Jeffers, Phys. Rev. Lett. 96, 070401 (2006).

[14] O. Jiménez, M. A. Solís-Prosser, A. Delgado, and L. Neves,
Phys. Rev. A 84, 062315 (2011).

[15] H. Sugimoto, Y. Taninaka, and A. Hayashi, Phys. Rev. A 86,
042311 (2012).

[16] U. Herzog, Phys. Rev. A 86, 032314 (2012).
[17] E. Bagan, R. Muñoz-Tapia, G. A. Olivares-Rentería, and

J. A. Bergou, Phys. Rev. A 86, 040303(R) (2012).
[18] K. Nakahira, T. S. Usuda, and K. Kato, Phys. Rev. A 86,

032316 (2012).
[19] S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd,

L. Maccone, S. Pirandola, and J. H. Shapiro, Phys. Rev.
Lett. 101, 253601 (2008).

[20] S. Pirandola, Phys. Rev. Lett. 106, 090504 (2011).
[21] R. Nair and B. J. Yen, Phys. Rev. Lett. 107, 193602

(2011).
[22] S. Lloyd, V. Giovannetti, and L. Maccone, Phys. Rev. Lett.

106, 250501 (2011).
[23] P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K.

Nemoto, W. J. Munro, and Y. Yamamoto, Phys. Rev. Lett.
96, 240501 (2006).

[24] M. Ban, K. Kurokawa, R. Momose, and O. Hirota, Int. J.
Theor. Phys. 36, 1269 (1997).

[25] S. J. D. Phoenix, S. M. Barnett, and A. Chefles, J. Mod. Opt.
47, 507 (2000).

[26] L. Roa, A. Delgado, and I. Fuentes-Guridi, Phys. Rev. A 68,
022310 (2003); L. Neves, M. A. Solís-Prosser, A. Delgado,
and O. Jiménez, Phys. Rev. A 85, 062322 (2012).

[27] M. A. Solís-Prosser, A. Delgado, O. Jiménez, and L. Neves,
Phys. Rev. A 89, 012337 (2014).

[28] A. K. Pati, P. Parashar, and P. Agrawal, Phys. Rev. A 72,
012329 (2005).

[29] R. L. Cook, P. J. Martin, and J. M. Geremia, Nature
(London) 446, 774 (2007).

[30] S. M. Barnett and E. Riis, J. Mod. Opt. 44, 1061 (1997).
[31] R. B. M. Clarke, V. M. Kendon, A. Chefles, S. M. Barnett,

E. Riis, and M. Sasaki, Phys. Rev. A 64, 012303 (2001).
[32] G. Waldherr, A. C. Dada, P. Neumann, F. Jelezko, E.

Andersson, and J. Wrachtrup, Phys. Rev. Lett. 109,
180501 (2012).

[33] M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki, Phys.
Rev. Lett. 90, 167906 (2003).

[34] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys.
Rev. Lett. 88, 127902 (2002).

[35] L. Sheridan and V. Scarani, Phys. Rev. A 82, 030301(R)
(2010).

[36] M. Huber and M. Pawłowski, Phys. Rev. A 88, 032309
(2013).

[37] S. Kochen and E. P. Specker, J. Math. Mech. 17, 59 (1967).
[38] T. Vértesi, S. Pironio, and N. Brunner, Phys. Rev. Lett. 104,

060401 (2010).
[39] L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C.

Saavedra, and S. Pádua, Phys. Rev. Lett. 94, 100501 (2005).
[40] P.-X. Chen, J. A. Bergou, S.-Y. Zhu, and G.-C. Guo, Phys.

Rev. A 76, 060303(R) (2007).
[41] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.118.100501, which in-
cludes Refs. [42–47], for more information about the
experimental setup and data analysis.

PRL 118, 100501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 MARCH 2017

100501-5

http://dx.doi.org/10.1103/PhysRevA.75.032110
http://dx.doi.org/10.1103/PhysRevLett.112.160404
http://dx.doi.org/10.1103/PhysRevLett.113.020409
http://dx.doi.org/10.1038/nphys3233
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1038/nature01289
http://dx.doi.org/10.1080/00107510010002599
http://dx.doi.org/10.1364/AOP.1.000238
http://dx.doi.org/10.1080/09500340903477756
http://dx.doi.org/10.1080/09500340903477756
http://dx.doi.org/10.1016/0047-259X(73)90028-6
http://dx.doi.org/10.1109/TIT.1975.1055351
http://dx.doi.org/10.1109/TIT.1975.1055351
http://dx.doi.org/10.1016/0375-9601(87)90222-2
http://dx.doi.org/10.1016/S0375-9601(98)00827-5
http://dx.doi.org/10.1103/PhysRevLett.96.070401
http://dx.doi.org/10.1103/PhysRevA.84.062315
http://dx.doi.org/10.1103/PhysRevA.86.042311
http://dx.doi.org/10.1103/PhysRevA.86.042311
http://dx.doi.org/10.1103/PhysRevA.86.032314
http://dx.doi.org/10.1103/PhysRevA.86.040303
http://dx.doi.org/10.1103/PhysRevA.86.032316
http://dx.doi.org/10.1103/PhysRevA.86.032316
http://dx.doi.org/10.1103/PhysRevLett.101.253601
http://dx.doi.org/10.1103/PhysRevLett.101.253601
http://dx.doi.org/10.1103/PhysRevLett.106.090504
http://dx.doi.org/10.1103/PhysRevLett.107.193602
http://dx.doi.org/10.1103/PhysRevLett.107.193602
http://dx.doi.org/10.1103/PhysRevLett.106.250501
http://dx.doi.org/10.1103/PhysRevLett.106.250501
http://dx.doi.org/10.1103/PhysRevLett.96.240501
http://dx.doi.org/10.1103/PhysRevLett.96.240501
http://dx.doi.org/10.1007/BF02435921
http://dx.doi.org/10.1007/BF02435921
http://dx.doi.org/10.1080/09500340008244056
http://dx.doi.org/10.1080/09500340008244056
http://dx.doi.org/10.1103/PhysRevA.68.022310
http://dx.doi.org/10.1103/PhysRevA.68.022310
http://dx.doi.org/10.1103/PhysRevA.85.062322
http://dx.doi.org/10.1103/PhysRevA.89.012337
http://dx.doi.org/10.1103/PhysRevA.72.012329
http://dx.doi.org/10.1103/PhysRevA.72.012329
http://dx.doi.org/10.1038/nature05655
http://dx.doi.org/10.1038/nature05655
http://dx.doi.org/10.1080/09500349708230718
http://dx.doi.org/10.1103/PhysRevA.64.012303
http://dx.doi.org/10.1103/PhysRevLett.109.180501
http://dx.doi.org/10.1103/PhysRevLett.109.180501
http://dx.doi.org/10.1103/PhysRevLett.90.167906
http://dx.doi.org/10.1103/PhysRevLett.90.167906
http://dx.doi.org/10.1103/PhysRevLett.88.127902
http://dx.doi.org/10.1103/PhysRevLett.88.127902
http://dx.doi.org/10.1103/PhysRevA.82.030301
http://dx.doi.org/10.1103/PhysRevA.82.030301
http://dx.doi.org/10.1103/PhysRevA.88.032309
http://dx.doi.org/10.1103/PhysRevA.88.032309
http://dx.doi.org/10.1512/iumj.1968.17.17004
http://dx.doi.org/10.1103/PhysRevLett.104.060401
http://dx.doi.org/10.1103/PhysRevLett.104.060401
http://dx.doi.org/10.1103/PhysRevLett.94.100501
http://dx.doi.org/10.1103/PhysRevA.76.060303
http://dx.doi.org/10.1103/PhysRevA.76.060303
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.100501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.100501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.100501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.100501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.100501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.100501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.100501


[42] A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J.
Yzuel, Opt. Eng. 46, 114001 (2007).

[43] I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J.
Yzuel, Appl. Opt. 43, 6278 (2004).

[44] A. Lizana, A. Márquez, L. Lobato, Y. Rodange, I. Moreno,
C. Iemmi, and J. Campos, Opt. Express 18, 10581 (2010).

[45] I. D. Ivanovic, J. Phys. A 14, 3241 (1981).
[46] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White,

Phys. Rev. A 64, 052312 (2001).
[47] G. Lima, L. Neves, R. Guzmán, E. S. Gómez, W. A. T.

Nogueira, A. Delgado, A. Vargas, and C. Saavedra, Opt.
Express 19, 3542 (2011).

[48] M. Mohseni, A. M. Steinberg, and J. A. Bergou, Phys. Rev.
Lett. 93, 200403 (2004).

[49] P. J. Mosley, S. Croke, I. A. Walmsley, and S. M. Barnett,
Phys. Rev. Lett. 97, 193601 (2006).

[50] M. A. Solís-Prosser, A. Arias, J. J. M. Varga, L. Rebón, S.
Ledesma, C. Iemmi, and L. Neves, Opt. Lett. 38, 4762
(2013).

[51] J. J. M. Varga, L. Rebón, M. A. Solís-Prosser, L. Neves, S.
Ledesma, and C. Iemmi, J. Phys. B 47, 225504 (2014).

[52] M. A. Solís-Prosser and L. Neves, Phys. Rev. A 84, 012330
(2011).

[53] A. Chefles, Phys. Rev. A 66, 042325 (2002).
[54] The way we have parametrized the state coefficients for

D ¼ 2 to 9 and given that they were randomly selected for
D ¼ 10 to 21 ensure that our experiment did not restrict
itself to a particular subset of symmetric states, encompass-
ing, instead, sets constructed from arbitrary fiducial states
[jψ0i in Eq. (1)].

[55] R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A.
Zeilinger, Sci. Rep. 3, 1914 (2013).

[56] L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley,
J. Phys. B 42, 114011 (2009).

[57] C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, Rev.
Sci. Instrum. 84, 123112 (2013).

[58] M. Unternährer, B. Bessire, L. Gasparini, D. Stoppa, and
A. Stefanov, Opt. Express 24, 28829 (2016).

PRL 118, 100501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 MARCH 2017

100501-6

http://dx.doi.org/10.1117/1.2801480
http://dx.doi.org/10.1364/AO.43.006278
http://dx.doi.org/10.1364/OE.18.010581
http://dx.doi.org/10.1088/0305-4470/14/12/019
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1364/OE.19.003542
http://dx.doi.org/10.1364/OE.19.003542
http://dx.doi.org/10.1103/PhysRevLett.93.200403
http://dx.doi.org/10.1103/PhysRevLett.93.200403
http://dx.doi.org/10.1103/PhysRevLett.97.193601
http://dx.doi.org/10.1364/OL.38.004762
http://dx.doi.org/10.1364/OL.38.004762
http://dx.doi.org/10.1088/0953-4075/47/22/225504
http://dx.doi.org/10.1103/PhysRevA.84.012330
http://dx.doi.org/10.1103/PhysRevA.84.012330
http://dx.doi.org/10.1103/PhysRevA.66.042325
http://dx.doi.org/10.1038/srep01914
http://dx.doi.org/10.1088/0953-4075/42/11/114011
http://dx.doi.org/10.1063/1.4850677
http://dx.doi.org/10.1063/1.4850677
http://dx.doi.org/10.1364/OE.24.028829

