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In the study of open quantum systems, one of the most common ways to describe environmental effects on
the reduced dynamics is through the spectral density. However, in many models this object cannot be
computed from first principles and needs to be inferred on phenomenological grounds or fitted to experimental
data. Consequently, some uncertainty regarding its form and parameters is unavoidable; this in turn calls into
question the accuracy of any theoretical predictions based on a given spectral density. Here, we focus on the
spin-boson model as a prototypical open quantum system, find two error bounds on predicted expectation
values in terms of the spectral density variation considered, and state a sufficient condition for the strongest
one to apply. We further demonstrate an application of our result, by bounding the error brought about by the
approximations involved in the hierarchical equations of motion resolution method for spin-boson dynamics.
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Introduction.—One of the most fundamental models of
open quantum systems is the spin-boson model, which
comprises a two-level system, such as a spin-1=2 particle,
and a large number of quantum harmonic oscillators
linearly coupled to it and acting as the environment
[1–4]. The influence of these degrees of freedom on the
dynamics of the spin can be computed from the strength of
the couplings between the spin and each oscillating mode
and the frequency of the modes; these quantities can be
combined to determine the spectral density of the envi-
ronment, a function of frequency closely related to its
internal correlations and their effect on the reduced dynam-
ics of the spin. Depending on the number of harmonic
oscillators present in the model and their dispersion, the
spectral density may be a continuous function (for an
uncountably infinite set of oscillators) or a linear combi-
nation of Dirac delta functions centered at some particular
frequencies (for a finite or countably infinite set); the
former type is convenient for analytical treatments, while
the latter is necessary when performing numerical studies.
Generally speaking, the spectral density is not a funda-
mental object, but rather a phenomenological quantity
obtained by making assumptions on the kind of system
under study or by fitting experimental data; hence, it is wise
to keep in mind that there may always be some error in the
functional form considered. This raises the question of how
accurate any predictions for a given model can be, given the
uncertainty in the spectral density of its environment.
To the best of our knowledge, it appears that no general,

rigorous error bound to theoretical predictions for the spin
dynamics with respect to changes in the spectral density
exists in the literature. The purpose of this work is to address
this issue and derive an upper bound to the deviation of the
time-dependent expectationvalue of some spin observable Ô
when the spectral density of the oscillator bath changes by a
known amount. Aside from the mathematical motivation,
such a resultwould be desirable froma physical point of view

for two main reasons. First, when using spectral densities
obtained from experiment, it would give a quantitatively
certified range for theoretical results to be compatible with
them,which can be helpful in order to determine the physical
soundness of the theoretical models used. Second, it would
make it possible to bound the error associatedwith numerical
solutions for the spin-boson model, in analogy with, e.g.,
error bounds on the time-evolved density using orthogonal
polynomials algorithm (TEDOPA) [5,6], whenever the
method used entails some degree of approximation to the
original spectral density of the problem at hand.
We derive our error bounds in the coherent-state

path-integral formalism [7,8] using the Feynman-Vernon
influence functional [9,10]: the idea behind this approach is
to treat variations of the spectral density analytically with
functional methods, without relying on approximations
or numerical techniques. The final results are expressed
in terms of canonical quantities such as the interaction
Hamiltonian and the bath correlation function, with no
need to refer to the path-integral expressions used in the
derivation. We will state two forms of the bound, one
stronger than the other at long times, and give a sufficient
condition for the strong bound to apply, as well as a few
examples of spectral density variations complying with it.
To provide a quantitative example of how our results can

be used to certify the accuracy of numerical schemes, we
will apply our error bound to the well-known hierarchical
equations of motion (HEOM) resolution method [11,12]
for spin-boson dynamics.
Model.—Consider the spin-boson Hamiltonian [2]

Ĥ ¼ ĤS ⊗ IB þ IS ⊗ ĤB þ ĤI

¼
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where âk and â†k are bosonic creation and annihilation
operators satisfying the commutation relation ½âk; â†l � ¼
δkl, the continuous label k identifying each boson may be
thought of as a momentum variable, and ωk as a dispersion
relation, which we take to be linear: ωk ¼ gk, with unit g
and in natural units with ℏ ¼ 1; the function hðkÞ expresses
the coupling strength between each mode and the qubit.
Depending on the choice of h (which may well include
delta functions), the model may have a finite, countably
infinite or uncountably infinite number of bosons, with k
bounded or unbounded; we will always assume the domain
of h to be the whole positive k axis. With ωk ¼ k, there is a
one-to-one correspondence between the choice of hðkÞ and
the spectral density JðωÞ of the bosonic environment:
JðωkÞ ¼ πh2ðωkÞ [13–15].
To complete our ansatz, we take the initial state to be

of the form ρ̂0 ¼ ρ̂S0 ⊗ ½ðe−βĤB=TrBðe−βĤBÞ�, where ρ̂S0 is
arbitrary and the bosons are in thermal equilibrium at
temperature T ¼ ð1=kBβÞ. In principle, this assumption
could be relaxed to include more general Gaussian initial
states for the bath [2], such as a thermal state perturbed by a
laser pulse before the interaction with the spin begins, but
for the sake of simplicity, we will keep our treatment within
the standard framework of thermal environments for the
time being and leave extensions to this first model to our
future work.
Under these assumptions, the expectation value of some

spin observable Ô at time t,

hÔðtÞi ¼ TrðÔe−iĤtρ̂0eiĤtÞ; ð2Þ

depends on the environment only via JðωÞ [10]. We will
use path-integral tools in order to quantify and bound the
dependence of hÔðtÞi on J: in order to better emphasize
this concept, in what follows we shall refer to expectation
values specifying the relevant spectral density as a sub-
script, effectively regarding hÔðtÞiJ as a functional on the
space of spectral densities as well as a function of time.
Spectral density variations and error bounds.—We want

to compare the expectation values of Ô for arbitrary
spectral densities J0ðωÞ and JðωÞ ≔ J0ðωÞ þ ΔJðωÞ: in
other words, we are interested in bounding the absolute
value of the difference

ΔhÔðtÞi ≔ hÔðtÞiJ − hÔðtÞiJ0 : ð3Þ

The path-integral formalism [10,16–22] makes it easy to
eliminate the bosonic degrees of freedom from the expres-
sion for the expectation value of ÔðtÞ by performing the
relevant Gaussian integral analytically [23]. The result is a
path integral for the spin variables alone, with the time
evolutions of the left and right part of the initial state no
longer independent. The Feynman-Vernon influence func-
tional encodes this mixing, which is a result of the partial

trace over the bath: it has the form of a Gaussian functional
of the spin variables, with the bath correlation function

ξJðtÞ ≔
Z

∞

0

dω
π

JðωÞ
�
coth

�
βω

2

�
cosðωtÞ þ i sinðωtÞ

�

coupling them. Note that since we have assumed a thermal
initial state for the bosons, which is stationary with respect
to their free dynamics, ξJðtÞ is not a function of two time
variables, but merely of their difference.
To write out hÔðtÞiJ explicitly in terms of J0ðωÞ and

ΔJðωÞ, we define the Heisenberg-picture operator ĥIðtÞ ≔
eiĤt½ðλ=2Þσz ⊗ IB�e−iĤt and the superoperator

Φ̂½ĥI; ĥ0I; J� ≔ T
Z

t

0

dt0
Z

t0

0

dt00½ĥIðt0Þ − ĥ0Iðt0Þ�

× ½ξJðt0 − t00ÞĥIðt00Þ − ξ�Jðt0 − t00Þĥ0Iðt00Þ�; ð4Þ

which acts on a spin state ρ̂0 with all ĥIðtÞ operators
multiplying it from the left and all ĥ0IðtÞ from the right in
the appropriate time order. This is, up to an overall minus
sign, the operator version of the logarithm of the influence
functional [23]. Using the exponential form of the
Feynman-Vernon functional and the fact that Φ̂½ĥI; ĥ0I; J�
is linear in the spectral density, it can be shown [23] that

ΔhÔðtÞi ¼
X∞
n¼1

hÔðtÞT ð−Φ̂½ĥI; ĥ0I;ΔJ�ÞniJ0
n!

: ð5Þ

Note that extending the same series by including the term
with n ¼ 0 just adds hÔðtÞiJ0 , giving hÔðtÞiJ.
The series in Eq. (5) may be bounded in magnitude term

by term, using the singular-value decomposition of the spin
operators to remove the complicated time dependence of
the time-ordered correlation functions, and then summed:
the result is the general formula

jΔhÔðtÞij ≤ jjÔjj
�
eλ

2
R

t

0
dt0
R

t0
0
dt00jΔξðt0−t00Þj − 1

�
; ð6Þ

where ΔξðtÞ ≔ ξJðtÞ − ξJ0ðtÞ ¼ ξΔJðtÞ, and we have used
the operator norm ∥Ô∥ ≔ ∥Ô∥∞ ¼ σ1ðÔÞ, σ1ðÔÞ being
the highest singular value of Ô.
Depending onΔJðωÞ, there are two options for bounding

the double time integral in Eq. (6): the worst-case scenario
is a ΔξðtÞ, which never decays, as would be the case for
singular contributions such as ΔJðωÞ ¼ κδðω − ω0Þ. Then
one would be forced to bound jΔξðtÞj by some constant
C > 0, obtaining the error bound

jΔhÔðtÞij ≤ ∥Ô∥ðeλ2Ct2=2 − 1Þ: ð7Þ

However, if ΔJðωÞ is such that the resulting ΔξðtÞ
decays fast enough to be absolutely integrable, i.e.,
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Z
∞

0

dtjΔξðtÞj ¼ c < ∞; ð8Þ

then one can tighten the bound considerably. This is the
case for many physically relevant situations, e.g., for
Ohmic, superohmic, or antisymmetrized Lorentzian spec-
tral density variations [23]. In practice, it is often easier to
apply the triangle inequality to jΔξðtÞj first and then bound
its real and imaginary parts separately, even though this
may weaken the bound slightly: the result is

jΔhÔðtÞij ≤ ∥Ô∥ðeλ2½γðβÞþη�t − 1Þ; ð9Þ

where

γðβÞ ≔
Z

∞

0

dt

����
Z

∞

0

dω
π

ΔJðωÞ coth
�
βω

2

�
cosðωtÞ

����;
η ≔

Z
∞

0

dt

����
Z

∞

0

dω
π

ΔJðωÞ sinðωtÞ
����;

this is the central result of this Letter.
The error bound Eq. (9) manifestly satisfies all properties

we expect from it: it is proportional to the norm of the spin
observable being evaluated, vanishes at t ¼ 0, and grows
exponentially in time, which makes it scale linearly at short
times, at a rate proportional to the square of the coupling in
accordance with the relation JðωÞ ¼ πh2ðωÞ. Note that the
norm of the observable itself only enters the result as a
prefactor: this is expected because the error is a conse-
quence of an incomplete knowledge of the dynamics of the
system, regardless of what observable is being estimated;
the relative error bound is thus the same for all observables
and only needs to be computed once.
Both bounds are very weak at long times because

by construction they keep no account of the free dynamics
of the spin. It is worth mentioning, however, that the
singular-value decomposition used in our derivation does
not affect the bounds in the case of pure dephasing, in
which ½ĥI; ĤS� ¼ 0 and no interference effects due to time
evolution take place inside Φ̂½ĥI; ĥ0I; J�: pure dephasing is
the worst-case scenario with respect to this inequality.
Application to hierarchical equations of motion.—The

HEOM method for solving open-system problems beyond
standard perturbation theory was first proposed and tested
around 1990 by Kubo, Tanimura, and others [11,24,25] for
antisymmetrized Lorentzian spectral densities JLðω;Ω;ΓÞ ¼
ðπ=2Þω=f½ðωþΩÞ2 þ Γ2�½ðω − ΩÞ2 þ Γ2�g; their scheme
replaces the possibly non-Markovian generalized quantum
master equation for the state of some open system with a
system of time-local differential equations for both the
reduced densitymatrix and a set of so-called auxiliary density
matrices, which encode information about the bath. In
principle, this hierarchy of equations is infinite, but in
computations it is necessary to truncate it at some order,

which may be much higher than conventional perturbative
approaches can usually attain [26].
The form of the bath spectral density is an important part

of the scheme, because it is necessary for the bath
correlation function to have the form of a sum of expo-
nentials, as is the case with antisymmetrized Lorentzians;
however, Meier and Tannor have shown [12] that many
other spectral densities may be approximated very accu-
rately by a suitable linear combination of Lorentzians,
greatly extending the applicability of the method. Later
studies such as Ref. [26] also explored the possibility of
fitting arbitrary bath spectral densities using other functions
yielding exponentially damped correlations.
We will now apply our findings to the results presented

in Ref. [12] on the spin-boson application of HEOM; for
the details of how the problem is formulated, the interested
reader is referred to the original paper. For our purposes, it
is sufficient to say that for an antisymmetrized Lorentzian
spectral density, which yields a correlation function

ξLðt;Ω;ΓÞ ¼
e−Γt

8ΩΓ

�
coth

�
β

2
ðΩþ iΓÞ

�
eiΩt

þ coth

�
β

2
ðΩ − iΓÞ

�
e−iΩt þ 2i sinðΩtÞ

�

−
2

β

X∞
k¼1

νke−νkt

ðΩ2 þ Γ2 − ν2kÞ2 þ 4Ω2ν2k
; ð10Þ

where νk ≔ ð2πk=βÞ are the Matsubara frequencies, the
scheme computes dynamics and operator expectation
values corresponding to a truncation of the series in
Eq. (10) at order N. The accuracy of this approximation
is unknown, and one usually performs numerical simu-
lations with increasing N until the results stop changing
appreciably. Convergence is thus declared heuristically,
assuming that if the distance between the results obtained
and those given by N − 1 is negligible, then so is the
difference between them and the true physics given by ξðtÞ.
With our result Eq. (9), the maximum distance between the
predictions for some value of N and the physically correct
result at N → ∞ may be determined with a few lines of
simple algebra instead of running an unpredictable number
of costly simulations: we will now demonstrate this by
giving the results of our bound Eq. (9) applied to the
simulations in the paper by Meier and Tannor [12].
In their model, the spin Hamiltonian is ĤS≔ðϵ=2Þ×

ðσzþσxÞ, the coupling is given by ξ ≔ ðλ2=4Þ ¼ 0.1, and
the spectral density considered is Ohmic and defined as
JðωÞ ≔ ðπ=2Þωe−ω=Ω, with Ω ¼ 15

4
ϵ and fitted with three

Lorentzians whose parameters are listed in Table I.
For a general linear combination of antisymmetrized

Lorentzians JðωÞ ¼ P
n
i¼1 piJLðω;Ωi;ΓiÞ, absorbing the

overall coupling strength λ2 in the coefficients pi for the
sake of simplicity, the truncation of ξðtÞ at order N gives
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ΔξðtÞ ¼ −
π

β

Xn
i¼1

X∞
k¼Nþ1

piνke−νkt

ðΩ2
i þ Γ2

i − ν2kÞ2 þ 4Ω2
i ν

2
k

;

which is real and satisfies condition Eq. (8) [23], and,
hence,

γðβÞ ¼
Z

∞

0

dtjΔξðtÞj

≤
π

β

Xn
i¼1

X∞
k¼Nþ1

jpij
ðΩ2

i þ Γ2
i − ν2kÞ2 þ 4Ω2

i ν
2
k

ð11Þ

and η ¼ 0. The series
P∞

k¼1½1=ðΩ2 þ Γ2 − ν2kÞ2 þ 4Ω2ν2k�
can be summed exactly, so we obtain the result as a
difference:

γNðβÞ ≔
π

2β

Xn
i¼1

jpij
�
−

1

ðΩ2
i þ Γ2

i Þ2

þ βΩi sinðβΓiÞ þ βΓi sinhðβΩiÞ
4ΩiΓiðΩ2

i þ Γ2
i Þ½coshðβΩiÞ − cosðβΓiÞ�

−
XN
k¼1

2

ðΩ2
i þ Γ2

i − ν2kÞ2 þ 4Ω2
i ν

2
k

�
; ð12Þ

using the triangle inequality on the jpij as in Eq. (11).
In Ref. [12], the authors computed the time evolution of

the expectation value hσzi at temperatures ϵβ ¼ 0.4, 1.4, and
10.0 for times until ϵtmax ¼ 30, at which point the system has
thermalized almost completely. The numberN ofMatsubara
frequencies needed for convergence for these three temper-
atures was 2, 7, and 48, respectively, due to the better
performance of the HEOM method at high temperatures.
We calculated the error bound for all three cases, both

with Eq. (12) and by performing the integral in Eq. (11)
numerically instead of using the triangle inequality; in
order to better assess the quality of our bound, we have also
determined the truncation order necessary for the maximum

error given by either bound to drop below 20% at each
temperature. Table II shows our results.
The numerical integral gives remarkably strong bounds

at the time scale of interest, given the exponential time
dependence of our result Eq. (9): the maximum difference
between the predicted and the actual value of hσzi at time
tmax is guaranteed to lie between 0.09jjσzjj ¼ 0.09 and
0.46jjσzjj ¼ 0.46 in all three cases, and γðβÞ is small
enough for the time scaling to be well within the linear
regime at time tmax, which is of the order of the equili-
bration time of the system [12]. It should also be noted that
in many relevant applications (e.g., transient spectroscopy)
the time scales of interest are much shorter.
Because the coefficients pi of the components of the

fitted spectral density and correlation function are both
positive and negative while the analytical formula Eq. (12)
only uses their absolute values, it overestimates jΔξðtÞj and
γðβÞ considerably, explaining the suboptimal results given
by the fully analytical bound for the case at hand.
Conclusions.—We have investigated the sensitivity of

spin operator expectation values in the spin-boson model to
changes in the spectral density, and derived two rigorous
time-dependent error bounds under the only assumptions of
factorizing initial conditions and a linearly coupled thermal
bath of quantum harmonic oscillators. The results depend
on the system-bath coupling strength and the spectral
density variation considered, and can be expressed in a
simple and elegant form in terms of these quantities. We
also found the encouraging result that most of the com-
monly used bath models obey the strongest of the two
bounds, the exceptions being baths with slowly decaying or
nondecaying correlation functions.
These error bounds may be applied in many physically

relevant contexts, such as comparing theoretical predictions
with experimental results based on spectral densities known
up to some error, determining whether a given environ-
mental spectrum constitutes a reasonable ansatz for a
physical system for which experimental or numerical data
are available, or certifying the accuracy of theoretical or
numerical results obtained by changing the bath correlation
function in order to solve for the dynamics.
As an example application, we have demonstrated the

latter use of the error bound by applying it to existing
numerical results obtained with the HEOM scheme: we
have shown that our results can quantitatively certify the
robustness of the method, providing useful bounds on the

TABLE I. Parameters of the reconstructed spectral density
JðωÞ ¼ P

3
i¼1 piJLðω;Ωi;ΓiÞ from Ref. [12].

ðpi=ξΩ4Þ ðΩi=ΩÞ ðΓi=ΩÞ
12.0677 0.2378 2.2593
−19.9762 0.0888 5.4377
0.1834 0.0482 0.8099

TABLE II. Results for the analytical and numerical bounds on the relative error at time tmax, for the three cases
considered in the original paper Ref. [12]. The last two columns indicate at what N the maximum relative error from
both calculations would be under 20%.

ϵβ N ½jΔhσziðtmaxÞjan=∥σz∥�ðNÞ ½jΔhσziðtmaxÞjnum=∥σz∥�ðNÞ Nan
20% Nnum

20%

0.4 2 27.94% 9.43% 3 2
1.4 7 62.39% 23.77% 10 8
10.0 48 111.69% 45.34% 70 56
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maximum physically possible difference between the
predicted and the exact results, and that it can therefore
be used to ascertain the achieved precision without testing it
against more costly numerical computations.
In addition to backing up theoretical predictions with

rigorous error bounds and finding practical applications in
computational contexts such as HEOM simulations, this
work also provides a route for the derivation of analogous
bounds on many-time correlation functions or open quan-
tum systems more complex than the spin-boson model,
such as n-level systems, spin chains, or the like, as long as
the environment and initial conditions satisfy the same
assumptions and bounded observables are considered.
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