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We demonstrate that a stationary squeezed phonon state can be prepared by a pulsed optical excitation of
a semiconductor quantum well. Unlike previously discussed scenarios for generating squeezed phonons,
the corresponding uncertainties become stationary after the excitation and do not oscillate in time. The
effect is caused by two-phonon correlations within the excited polaron. We demonstrate by quantum kinetic
simulations and by a perturbation analysis that the energetically lowest polaron state comprises two-
phonon correlations which, after the pulse, result in an uncertainty of the lattice momentum that is
continuously lower than in the ground state of the semiconductor. The simulations show the dynamics of
the polaron formation process and the resulting time-dependent lattice uncertainties.
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In a squeezed state the uncertainty of one measurable
variable is reduced below its zero-point value, while the
uncertainty of its conjugate variable is increased. Squeezed
states are of interest because they are genuinely quantum
mechanical in nature, but also because the reduced variance
allows measurements with unprecedented precision. In
particular, squeezed light is employed for high-precision
interferometric measurements [1–3], which may be used,
e.g., for the detection of gravitational waves [2,4,5]. While
squeezing was first demonstrated for photons [6], it has
become a focus of research also for other bosonic systems,
such as magnons, where a reduction of the spin noise below
the vacuum level has been realized [7,8].
Recently, squeezing has been reported even for microm-

eter-scale mechanical resonators [9–11] opening new
perspectives for quantum engineering of states of matter
at macroscopic length scales and the realization of ultra-
sensitive sensing of force and motion. Another mechanical
realization of squeezing can be found for lattice vibrations
in a crystal, i.e., phonons. Here, position and momentum
provide a natural choice for the two conjugate variables.
With this choice, a squeezed phonon state is a state in which
the uncertainties of either the positions or the momenta
of the lattice nuclei are reduced to values smaller than those
at absolute zero temperature. Phonon squeezing continues
to attract much attention both in theory and experiment
[3,12–22]. The corresponding uncertainties are measured
usually either optically in a pump-probe setup or by
ultrafast x-ray diffraction [12,17–19].
The uncertainties of the two conjugate variables in a

squeezed state usually oscillate in time; they alternate
between being reduced and being inflated compared to
their zero-point value. If there is a characteristic phonon
frequency, for example, because primarily phonons with a
certain energy are excited, the oscillation frequency is twice
this value [23]. This double-frequency oscillation has often

been interpreted as a clear indication of a squeezed phonon
state. Although it has been shown that the oscillation does
not necessarily indicate that the uncertainties actually fall
below their zero-point level [16], the double-frequency
oscillation was found for all preparation schemes for
squeezed states discussed so far. For free systems like
photons in vacuum it is obvious that squeezing leads to the
double-frequency oscillation because it requires two-boson
correlations which oscillate with this frequency. As will be
shown in this Letter, this does not necessarily hold true for
the preparation of a squeezed state in a solid.
We present quantum kinetic simulations of a semi-

conductor quantum well that is optically excited on its
lowest transition line. A special emphasis lies on the
dynamics of the lattice uncertainties. In this way, we can
monitor how the excitation leads to a new kind of squeezed
phonon state in which the uncertainty of the lattice
momentum is continuously smaller than in the ground state.
The physics behind this effect is the optical excitation of

a polaron whose phonon component is squeezed. Squeezed
states and, more generally, states with two-phonon corre-
lations have been employed previously in variational
approaches to describe polarons [24–27]. In these calcu-
lations the inclusion of two-phonon correlations led to
lower energies. Here, we shall show that a stable polaron
state comprising the two-phonon correlations required for
squeezing can be optically excited. That it is indeed the
polaron which contains the squeezed phonons is further
substantiated by a perturbation theoretic analysis.
We employ a microscopic model of a GaAs/AlAs

quantum well with two electron and three heavy-hole
subbands, similar to the one used in an earlier publication
[28]. The subbands are calculated within the envelope-
function framework for a square potential with a width of
20.34 nm. A sketch of the subband structure is shown
in Fig. 1.
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The charge carriers are coupled to the lattice via the
Fröhlich Hamiltonian [29]

HFr ¼
X

i1i2
k1k2qz

h
gei1i2q c†i1k2ci2k1bq þ gei1i2q c†i2k1ci1k2b

†
q

i

−
X

j1j2
k1k2qz

h
ghj2j1q d†j1k2dj2k1bq þ gh�j2j1q d†j2k1dj1k2b

†
q

i
:

ð1Þ

Here, ge=h is the Fröhlich coupling matrix and cð†Þ, dð†Þ, and
bð†Þ are Fock annihilation (creation) operators for electrons,
holes, and phonons. k1 and k2 are in-plane wave vectors, q
is the three-dimensional phonon wave vector with
q ¼ k2 − k1 þ qzez, and i1;2; j1;2 are the subband indices.
We consider only the LO phonon branch, to which

electronic excitations couple most strongly; positions
and momenta and their uncertainties therefore refer to
the relative motion of the lattice nuclei. In principle, the
coupling of the electronic subsystem to phonons can be
enhanced by the application of an external electric field,
which increases the charge separation in excited states.
While this allows a more efficient driving of coherent
phonons [30], in the present case it proved to lessen the
squeezing within the excited polaron.
The model also includes the Coulomb interaction

between charge carriers and the electric dipole coupling
to the driving laser pulse. In particular, this accounts for
excitons visible as discrete lines in the absorption spectrum.
The dynamics are calculated with a method that traces the
order of all dynamical variables in the strength of the
driving field E and the phonon coupling element g, and
neglects all contributions above a certain order in E or g.
More details about the model and the simulation method
can be found in earlier publications [28,30].

In order to get realistic values for the strength of
the squeezing, the spatial averaging inherent in any
measurement has to be taken into account [28].
Otherwise, the fluctuations of too many phonon modes
would contribute. We therefore take a Gaussian average
over the relative displacement UzðtÞ of the lattice and the
corresponding momentum ΠzðtÞ. The averaging profile has
a standard deviation of σx;y ¼ 5 μm in the in-plane direc-
tions and σz ¼ 20 nm in growth direction. The extent in the
z direction is chosen equal to the width of the quantum well
because a larger value would obviously degrade the relative
contribution of the well in favor of the barrier, in which no
dynamics are excited. Such a small value could exper-
imentally be achieved by a measurement technique that
reacts to the well material only, for example, an optical
probe pulse that energetically lies between the energy gaps
of well and barrier material.
Throughout this Letter, we make use of dimensionless

units for lattice displacement and momentum. The factors
connecting the dimensionless variables to the real values
are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωÞp ¼ 4.0 pm for the lattice displacement

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏmω=2

p ¼ 1.3 × 10−23 kgm=s for the momentum.
Here, ω is the frequency and m is the reduced mass
of the LO lattice motion; the numerical values are for
GaAs. By definition, the uncertainties of the dimension-
less lattice variables are equal to one at absolute zero
temperature. The spatial averaging reduces those values to
ðΔUzÞ20¼ðΔΠzÞ20¼ a3=ð32π3

2σxσyσzÞ¼ 2.0×10−12, where
a is the lattice constant.
In a squeezed state, one of the uncertainties is reduced

below its zero-point value. The strength of the squeezing is
quantified by the squeezing factors, which are defined as
the change of the uncertainties relative to their zero-point
level; for example, the positional squeezing factor is
defined as

SU ¼ ðΔUzÞ2 − ðΔUzÞ20
ðΔUzÞ20

: ð2Þ

A negative value of either SU or SΠ signifies squeezing.
In terms of the phonon operators, the squeezing is

determined by the number of incoherent phonons
δhb†qbq0 i ¼ hb†qbq0 i − hb†qihbq0 i and the two-phonon corre-
lations δhbqbq0 i ¼ hbqbq0 i − hbqihbq0 i. Explicitly, we have

SU=Π ¼ 1

ðΔUzÞ20
1

N

X

q;q0

qzq0z
qq0

e−1
2
σ2xðq2xþq02x Þ−1

2
σ2yðq2yþq02y Þ

× e−1
2
σ2zðq2zþq02z Þ2Reðδhb†qbq0 i � δhbqbq0 iÞ; ð3Þ

where the upper sign refers to SU and the lower to SΠ andN
denotes the number of primitive unit cells in the system
volume.

FIG. 1. Electronic structure of the GaAs/AlAs quantum well.
Two electron and three heavy-hole subbands are considered. The
spacing between the electron and hole subbands is exaggerated
by a factor of 10 and 20, respectively. Thus, the well appears
shallower than it really is.
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Because the number of incoherent phonons cannot be
negative, a squeezed state depends crucially on the two-
phonon correlations. They also are the origin of the
double-frequency oscillation of the uncertainties that is
so characteristic for many squeezed states. In our case, they
arise as part of the polaron. Within this stationary com-
pound state, their free energy oscillation with twice the
phonon frequency is suppressed.
In our quantum kinetic simulations we excite the

quantum well with an optical pulse with a full width at
half maximum of its intensity of 354 fs, which is long
compared with the phonon oscillation period of 114 fs. The
laser is resonant with the lowest exciton, which for this
quantum well lies at 1.522 eV. A short pulse within the
band gap has been shown previously to impulsively drive
coherent phonons, which yields a more typical squeezed
state in which the uncertainties oscillate [28]. In this case,
the long excitation time serves to selectively excite the
polaron while keeping all other excitations as small as
possible. A further increase of the pulse duration therefore
leads to very similar results.
Figure 2 shows the dynamics of the quantum well under

the excitation conditions specified above and the resulting
formation of a polaron. The pulse slowly excites electron-
hole pairs up to a sheet density of 1010 cm−2 (upper plot).
As is seen from the central plot, associated with the optical
excitation a mean displacement of the lattice ions builds up.
Since the pulse duration is much longer than the phonon

oscillation period, this buildup occurs almost adiabatically.
A small oscillation remains. This is not the free oscillation
of the lattice, but driven by a quantum beat between higher
electronic transitions that have also been coherently
excited and now drag the lattice into a slow oscillation.
It disappears when the upper hole subbands are artificially
switched off in the calculations (not shown).
The lower part of the figure displays the squeezing

factors. During the pulse, the uncertainty of the lattice
displacement is increased, whereas the momentum uncer-
tainty clearly falls below its zero-point level. Both uncer-
tainties remain constant after the pulse. As explained
above, the uncertainties in a squeezed state would normally
oscillate with twice the phonon frequency. In the present
case, we have excited a polaron state, which is stable on
these time scales; within the polaron state, two-phonon
correlations are present and form a squeezed state. In other
words, the changes in the electronic subsystem sustain
a state of the phonon subsystem in which the lattice
momentum is permanently squeezed.
The state is not an ideal squeezed state in the sense that

the uncertainty product is larger than the minimum value
mandated by the uncertainty principle. For small values of
the squeezing factors, the uncertainty principle means that
the sum of the two squeezing factors must be equal to or
larger than zero. In this particular case, SU rises much more
than SΠ falls because incoherent phonons are created.
The change in the uncertainties is relatively small

compared to their zero-point value. In experiments, even
smaller changes have been measured [19]. In addition, the
perturbative calculations below will show that the squeez-
ing factors are proportional to the square of the electron-
phonon coupling g, so a larger effect can be expected in
materials in which the coupling is stronger.
In our model the squeezed state does not decay because

we assume an infinite lifetime for the polaron. This
approximation is justified because even for coherent
phonons in GaAs at low temperatures measurements of
the decoherence time led to the result T2=2 ≈ 9 ps [31],
which should be a lower limit for the lifetime of phonons
bound in a polaron. In comparison, we simulate a maxi-
mum time of 1.6 ps, while the double-frequency oscillation
of the uncertainties in a common squeezed state in this
system lies at 57 fs.
The quantum kinetic calculations indicate that we have

excited a polaron whose phonon component is squeezed. In
order to gain insight into the phonon component of the
polaron and to exclude the possibility that the creation of
the squeezed lattice state and of the polaron are only
coincidental, we calculate the polaron state perturbatively
in a simplified model.
Because only phonon modes close to the Brillouin zone

center noticeably contribute to the uncertainty of the
spatially averaged lattice variables, we restrict the Fröhlich
Hamiltonian (1) to the phononmodewithwavevector q ¼ 0.

FIG. 2. Formation of the squeezed polaron state. The upper part
shows the sheet density of electron-hole pairs, in the center the
dimensionless lattice variables are depicted, and the lower part
shows the uncertainties relative to their zero-point values. The
quantum well is optically excited around t ¼ 0 by a Gaussian
pulse resonant with the lowest exciton (1.522 eV, full width at
half maximum 354 fs).
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Some caremust be taken in the limitq → 0: In the continuum
limit, the coupling element gq diverges as q approaches zero,
but due to the overall charge neutrality the diverging
contributions from electrons and holes cancel each other
and a finite value remains. The reduced Hamiltonian reads

~HFr ¼
X

i1i2

h
gei1i2c†i1ci2bþ gei1i2c†i2ci1b

†
i

−
X

j1j2

h
ghj2j1d†j1dj2bþ gh�j2j1d†j2dj1b

†
i
; ð4Þ

wherewe have left out a sumover the in-planewave vector of
the electronic states and all formerly q-dependent variables
implicitly refer to the limit q → 0.
As we have seen in Eq. (3), the lattice uncertainties

are determined by the number of incoherent phonons
δhb†bi ¼ hb†bi − jhbij2 and the two-phonon correlations
δhbbi ¼ hbbi − hbi2, via

SU ∝ Reðδhb†bi þ δhbbiÞ; ð5aÞ

SΠ ∝ Reðδhb†bi − δhbbiÞ: ð5bÞ

Incoherent phonons increase both uncertainties, while the
two-phonon correlations increase either the displacement
or the momentum uncertainty and decrease the other one,
depending on the sign of their real part. The proportionality
factor is the same in both equations.
We calculate these quantities up to second order in the

phonon coupling g with the help of time-independent
perturbation theory. The unperturbed system is given by

~H0 ¼
X

i

εei c
†
i ci þ

X

j

εhj d
†
jdj þ ℏωb†b; ð6Þ

where the Coulomb interaction has been neglected. The
electron-phonon coupling ~HFr acts as the perturbation. We
are interested in the first and second order corrections to
the lowest pair state c†1d

†
1j0i, which is the state reached by

the dipole coupling starting from the crystal ground state.
The first order correction is given by

jΔψ ð1Þi ¼
X

i;j

−
g�e1;i − g�hj;1

Δεei þ Δεhj þ ℏω
ji; j; 1i; ð7Þ

with Δεe=hn ¼ εe=hn − εe=h1 and the eigenstate of the unper-
turbed Hamiltonian ji; j; ni ¼ ðn!Þ−1

2c†i d
†
jðb†Þnj0i. The first

order correction contains the coherent phonons, i.e., the
shift in the equilibrium position of the lattice, and also
allows us to determine the number of incoherent phonons,
which is of second order in g:

δhb†bi ¼
X

ði;jÞ≠ð1;1Þ

jge1;i − ghj;1j2
ðΔεei þ Δεhj þ ℏωÞ2 : ð8Þ

In the same way, the second order correction yields the
two phonon correlations. We make use of the fact that
ge=hn1n2 ¼ ðge=hn2n1Þ� when the divergent term is removed
in the limit q ¼ qzez; qz → 0þ and thereby obtain

δhbbi ¼
X

ði;jÞ≠ð1;1Þ

jge1;i − ghj;1j2
ℏωðΔεei þ Δεhj þ ℏωÞ : ð9Þ

As we look at the lowest optical excitation, the electronic
energy differences Δεe=hn are positive. This means that the
two-phonon correlations are larger than the number of
incoherent phonons and, consequently, the lattice momen-
tum is squeezed, just as we have seen in the full quantum
kinetic calculations. This result also implies that at least one
higher electronic subband is required, and indeed the
dynamical calculations do not show any squeezing if only
one electron and one hole subband are present.
Momentum and position enter symmetrically in the

uncertainty relation as well as in the harmonic oscillator
Hamiltonian. However, our results reveal a striking asym-
metry as it is always the lattice momentum that is squeezed
and not the lattice position. The cause is the electron-
phonon coupling, which is not symmetric in position and
momentum. It connects the effective potential of electrons
with the lattice displacement and thus involves only the
lattice position operator.
It is also worth noting that the two-phonon correlations

and, therefore, also the squeezing effect depend on the
combination of resonant and off-resonant terms in the
electron-phonon interaction, Eq. (4). Applying the rotating
wave approximation (RWA) to this interaction destroys the
squeezing effect. The RWA is a standard approximation for
modeling systems with, e.g., photons at optical frequencies,
but in this case it would prevent the stationary squeezing.
In conclusion, we have shown by quantum kinetic

simulations of a semiconductor quantum well that it is
possible to prepare a permanently squeezed phonon state
by a pulsed optical excitation of the polaron. The squeezing
is atypical in the sense that in this case the uncertainties do
not exhibit oscillations with twice the phonon frequency.
For, e.g., squeezed photons in free space such a permanent
reduction of only one uncertainty would not be possible,
but in a crystal the electronic component of the polaron
stabilizes the change in the lattice uncertainties.
Under quite general circumstances the uncertainty of the

lattice momentum is reduced, while the positional uncer-
tainty is increased. This can be understood with the help of
a perturbation theory calculation in a simplified model. The
perturbative calculation clearly reveals that it is indeed the
excitation of a polaron that creates the squeezed phonons.
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