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We theoretically demonstrate for the first time that a single free electron in circular or spiral motion emits
twisted photons carrying well-defined orbital angular momentum along the axis of the electron circulation,
in adding to spin angular momentum. We show that, when the electron velocity is relativistic, the radiation
field contains harmonic components and the photons of lth harmonic carry lℏ total angular momentum for
each. This work indicates that twisted photons are naturally emitted by free electrons and are more
ubiquitous in laboratories and in nature than ever thought.
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Twisted photons that carry an orbital angular momentum
(OAM) in addition to a spin angular momentum (SAM) have
been intensively studied for applications in information,
nanotechnologies, and imaging technologies [1]. Their inter-
actions with atoms [2], molecules [3], materials [4,5], and
plasmas [6] are also being explored.A photonwithOAMwas
originally discussed with respect to a specific mode of
electromagnetic wave called the Laguerre-Gaussian mode
[7], and the discussion was later extended to more general
cases [8]. It was shown that, when the radiation field has a
phase term represented by einφ, each photon carries an OAM
of nℏ, whereφ is the azimuthal angle around the propagation
axis, n is an integer, and ℏ is the Planck constant.
These previousworks addressedmathematicalmodels for

the twisted electromagnetic waves without considering the
radiation processes themselves. Under the requirement that
their models satisfy the Helmholtz equations, the authors
discussed the existence of AM. In the laboratories, research-
ers have developed various technologies to produce electro-
magnetic waves of the Laguerre-Gaussian mode. Currently,
twisted photons in the visible and infrared wavelength
ranges can be readily produced using conventional laser
sources and holographic filters [1]. On the other hand, there
is much less effort to seek physical processes that produce
twisted photons in Nature. Some authors have reviewed the
possible roles of twisted photons in astrophysics [9,10], but
they mainly discussed how to detect the twisted photons
instead of how to create them. Other authors have addressed
the modifications of radiation fields by a gravitational field
around a rotating black hole [11] or inhomogeneous
interstellarmedia [12,13] away from the radiation processes.
Here, we show theoretically for the first time that an

electromagnetic wave radiated by a single free electron in

circular motion has a helical phase structure and carries
OAM. This work will bring the vortex photon science to a
new stage where the vortex photons are discussed in the
context of real physical processes, how they are created,
how they propagate, and what role they play in laboratory
systems and in natural systems.
The radiation from an electron in circular motion was

first addressed by Heaviside in 1904 [14]. It is the basis of
the radiation processes by electrons in a magnetic field or
an intense circular polarized light field, which are known as
cyclotron (synchrotron) radiation or Thomson (Compton)
scattering. Depending on the physical parameters, their
radiation wavelengths are ranging from radio wave to
gamma rays. Because they play important roles in astro-
physics, plasma physics, and accelerator physics, the
radiation from an electron in circular or spiral motion
has been addressed in many textbooks [15,16] and liter-
ature [17,18]. However, surprisingly, no study has dis-
cussed its phase structure or angular momentum for more
than 100 years. In this paper, we discuss this radiation
process paying a special attention to the phase structure of
the radiation field. We derive its vector potential in a
spherical coordinate. Then, we demonstrate its helical
phase structure and its AM.
Generally, the real part of the time-averaged AM density

~j of an electromagnetic field can be represented as a cross
product of the linear momentum density ~p and the position
vector ~r as follows [19]:

h~ji ¼ ~r × h~pi ¼ 1

4πc
~r × ð~E × ~H�Þ

¼ r
4πc

ð~Eð~n · ~H�Þ − ~H�ð~n · ~EÞÞ: ð1Þ
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Here, c is the light velocity, ~E and ~H are the electric and
magnetic fields, the asterisk on the shoulder represents their
complex conjugate, and ~n is the unit vector that directs the
observer, which is defined as ~n ¼ ~r=r. The brackets hi
indicate time average. In the radiation zone, the electric and
magnetic fields are approximately perpendicular to ~n [15].

In this case, the inner products ~n · ~H� and ~n · ~E, and
therefore AM, are approximately zero. It should be noted
that an electromagnetic field with AM should have a
nonzero component along the direction of propagation.
By integrating Eq. (1) on a spherical surface that

surrounds the source, the AM that the radiation field carries
away can be expressed as [19]

d~J
dt

¼
Z

ch~jir2dΩ ¼
Z

r3dΩ
1

4π
ð~Eð~n · ~H�Þ − ~H�ð~n · ~EÞÞ:

ð2Þ
Here,Ω is the solid angle, and the integration is taken over a
spherical surface at distance r from the origin. The energy
that the radiation carries away can be expressed as [16]

dU
dt

¼
Z

r2dΩ
c
4π

ð~E × ~H�Þ: ð3Þ

We can see in Eq. (3) that for the energy flow, it is
sufficient to consider terms in the integrant up to the order
of 1=r2 because the higher-order terms disappear at a
sufficiently large distance (r → ∞). However, for AM, we
must consider the terms up to the order of 1=r3.
We treat the electron motion and radiation field in a

coordinate system shown in Fig. 1. An electron travels on a
circular orbit around the origin. Here, we do not assume the
cause of this circular motion. The electron motion can be
specified by only two parameters: its velocity β and its
angular frequency ω. The radius re of the motion can be
expressed with these parameters as re ¼ cβ=ω. Although
the direction of electron motion is another parameter, for
simplicity, here, we select it as counterclockwise around the
z axis as shown in Fig. 1. We treat this problem in the

spherical coordinate in contrast with previous works [7,8],
where the cylindrical coordinate was selected. Generally,
radiation propagates in a free space as a spherical wave;
therefore, it seems best described in the spherical coordinate.
The electromagnetic field radiated by a moving electron

can be represented by a retarded potential. When the
electron motion is periodic, it can be decomposed into
Fourier series as follows [15]:

~Að~r;tÞ¼e
~β

j~r−~rej−ð~r−~reÞ · ~β

����
te

¼
X∞
l¼1

~A
⌒

lð~rÞe−ilωt: ð4Þ

Here, ~r is the position vector of the observing point, ~re and
~β are the electron position and velocity, respectively, as
previously described, which should be expressed with the
electron time te ¼ t − j~r − ~rej=c. It should be noted that
when the electron velocity is much smaller than the light
velocity, only the fundamental component exists. When the
electron velocity is comparable to the light velocity, e.g., it
is relativistic, the harmonic components appear.
The Fourier components of the vector potential can be

expressed as follows [15]:

~A
⌒

lð~rÞ ¼
e
c

1

2π=ω
eikr

r

I
eilωðte−

~n·~reðteÞ
c Þd~reðteÞ þ o

�
1

r2

�
: ð5Þ

Here, we separate the term with the first order of 1=r from
the other terms for convenience in later discussion. The
position vector of the electron can be represented in the
spherical coordinate as follows:

~re ¼ refsin θ sinðωte − φÞ~er þ cos θ sinðωte − φÞ~eθ
− cosðωte − φÞ~eφg: ð6Þ

By inserting Eq. (6) into Eq. (5), we can obtain the
following expression:

~Alð~r;tÞ¼

0
B@
Alr

Alθ

Alφ

1
CA

¼e
c
eiðlω=cÞr

r
eilφreω

0
B@
sinθ 1

2π

H
eiðlϕ−lβsinθsinϕÞcosϕdϕ

cosθ 1
2π

H
eiðlϕ−lβsinθsinϕÞcosϕdϕ

1
2π

H
eiðlϕ−lβsinθsinϕÞsinϕdϕ

1
CA

þ ~A
⌒ð2Þ
l þ���

¼e
eiðkr−lωtþlφÞ

r

0
B@

JlðlβsinθÞ
cotθJlðlβsinθÞ
iβJ0lðlβsinθÞ

1
CAþo

�
1

r2

�
ð7Þ

Here, we introduced a new parameter ϕ ¼ ωte − φ and
express the integration in Eq. (5) by Bessel functions of the
first order. We also used the relation k≡ lω=c.

FIG. 1. Coordinate System. The azimuthal angle φ is taken
from the y axis.
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The electric and magnetic fields can be expressed by the
vector potential as follows:
0
B@

Hlr

Hlθ

Hlφ

1
CA¼

0
B@

0

− 1
r
∂
∂r ðrAð1Þ

lφ Þ
1
r
∂
∂rðrAð1Þ

lθ Þ

1
CA

þ

0
BBB@

1
rsinθ

∂
∂θ ðsinθAð1Þ

lφ Þ− 1
r sinθ

∂
∂φA

ð1Þ
lθ

þoð 1r2Þ
þoð 1r2Þ

1
CCCAþo

�
1

r3

�
;

ð8Þ

0
B@

Elr

Elθ

Elφ

1
CA¼

0
B@

0

1
r
∂
∂rðrAð1Þ

lθ Þ
1
r
∂
∂rðrAð1Þ

lφ Þ

1
CA

þ

0
BBB@
− 1

rsinθ
∂
∂θðsinθAð1Þ

lθ Þ− 1
rsinθ

∂
∂φA

ð1Þ
lφ

oð 1r2Þ
oð 1r2Þ

1
CCCAþo

�
1

r3

�
:

ð9Þ

Here, we present the results by separating the terms of
the order of 1=r. In Eqs. (8) and (9), the first bracket on the
right-hand side is the first order of 1=r, and the second
bracket is the second order. Later, we represent those terms
as EðiÞ and HðiÞ, and the index on the shoulder represents
the order of 1=r. Some components are not explicitly
shown because they are not necessary in the following
discussion. It should be noted that in the order of 1=r2,

we can find nonzero electric and magnetic field compo-
nents in the propagation direction, which would contribute
to AM in Eq. (2). In addition, all necessary field compo-
nents in the following discussion can be expressed by the
derivatives of the lowest-order terms of the vector potential
in Eq. (7).
Before calculating AM, we will show the helical phase

structure of the radiation field. The electric and magnetic
fields in the lowest order of 1=r can be derived from
Eqs. (8) and (9) as follows:

0
B@

Eð1Þ
lr

Eð1Þ
lθ

Eð1Þ
lφ

1
CA ¼

0
BB@

0

1
r
∂
∂r ðrAð1Þ

lθ Þ
1
r
∂
∂r ðrAð1Þ

lφ Þ

1
CCA ¼

0
BB@

0

ikAð1Þ
lθ

ikAð1Þ
lφ

1
CCA

¼ e
c
lω

0
BB@

0

icotθJlðlβ sin θÞ
−βJ0lðlβ sin θÞ

1
CCA eiðkr−lωtþlφÞ

r
: ð10Þ

To clearly show the phase structure, we express these
terms in the Cartesian coordinate as follows:

0
BB@

Eð1Þ
lx

Eð1Þ
ly

Eð1Þ
lz

1
CCA ¼

0
BB@

− sin θ sinφ − cos θ sinφ − cosφ

sin θ cosφ cos θ cosφ − sinφ

cos θ − sin θ 0

1
CCA

×

0
B@

0

Eð1Þ
lθ

Eð1Þ
lφ

1
CA: ð11Þ

The final result can be expressed as a sum of circular
polarized components of positive and negative helicities,
which are proportional to the rotation vectors defined as

~E ¼ Eð1Þ
lx ~ex þ Eð1Þ

ly ~ey þ Eð1Þ
lz ~ez ¼

ðEð1Þ
lx − iEð1Þ

ly Þffiffiffi
2

p ~ex þ i~eyffiffiffi
2

p þ ðEð1Þ
lx þ iEð1Þ

ly Þffiffiffi
2

p ~ex − i~eyffiffiffi
2

p þ Eð1Þ
lz ~ez

≡ Eð1Þ
lþ ~eþ þ Eð1Þ

l− ~e− þ Eð1Þ
lz ~ez ¼

e
c
lω

eiðkr−lωtÞ
r

0
BBBBB@

n
cos2θ
sin θ Jlðlβ sin θÞ þ βJ0lðlβ sin θÞ

o
eiðl−1Þφ~eþ

þ
n
− cos2θ

sin θ Jlðlβ sin θÞ þ βJ0lðlβ sin θÞ
o
eiðlþ1Þφ~e−

−i cos θJlðlβ sin θÞeilφ~ez

1
CCCCCA
: ð12Þ

As shown in Eq. (12), the electric field can be
decomposed into two circular polarized components
with respect to the z axis in the positive and
negative helicities with the phase terms eiðl−1Þφ and

eiðlþ1Þφ, respectively. We will discuss this phenome-
non later.
By inserting Eqs. (8) and (9) into Eqs. (2) and (3), the

AM density can be expressed as

PRL 118, 094801 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 MARCH 2017

094801-3



h~jli¼
r

4πc
ð0;Eð1Þ

lθ H
ð2Þ�
lr −Hð1Þ�

lθ Eð2Þ
lr ;E

ð1Þ
lφ H

ð2Þ�
lr −Hð1Þ�

lφ Eð2Þ
lr Þr;θ;φ

þo

�
1

r3

�
: ð13Þ

From the symmetry of the system, the projected AM to
the z axis is expected to be well defined [16]:

hjlzi ¼ −hjlθi sin θ
¼ r

4πc
sin θ

�
Eð2Þ
lr H

ð1Þ�
lθ − Eð1Þ

lθ H
ð2Þ�
lr þ o

�
1

r4

��
ð14Þ

The total angular momentum carried away by the
radiation can be obtained by integrating Eq. (14) on the
sphere surrounding the source as follows:

�
dJlz
dt

�
¼

Z
cr2hjlzidΩ: ð15Þ

By inserting Eqs. (8) and (9) into Eq. (14) and using
Eq. (15), we obtain

�
dJlz
dt

�
¼
Z

dΩ
cr2

4πc

�
klðAð1Þ

lθ Að1Þ�
lθ þAð1Þ

lφ Að1Þ�
lφ Þ

− ik

	
Að1Þ
lθ

∂
∂θ ðsinθA

ð1Þ�
lφ ÞþAð1Þ�

lφ
∂
∂θ ðsinθA

ð1Þ
lθ Þ


�

¼ r2

4π
kl
Z

dΩðAð1Þ
lθ Að1Þ�

lθ þAð1Þ
lφ Að1Þ�

lφ Þ: ð16Þ

Here, the terms in the brace in Eq. (16) vanish in the
integration regarding to θ.
On the other hand, the energy that the electromagnetic

wave carries away can be obtained from the Poynting
vector, whose radial component is expressed as follows:

hSlri ¼
�

c
4π

~El × ~H�
l

�
r
¼ c

4π
ðEð1Þ

lθ H
ð1Þ�
lφ − Eð1Þ

lφ Hð1Þ�
lθ Þ

¼ c
4π

k2ðAð1Þ
lθ A

ð1Þ�
lθ þ Að1Þ

lφ Að1Þ�
lφ Þ ð17Þ

Then, the carried energy is

�
dUl

dt

�
¼ ck2

4π

Z
r2dΩðAð1Þ

lθ A
ð1Þ�
lθ þ Að1Þ

lφ Að1Þ�
lφ Þ: ð18Þ

Using Eqs. (16) and (18), the ratio of AM to the energy
that the radiation field carries is obtained as

hdJlzdt i
hdUl
dt i

¼
kl
4π

R
r2dΩðAð1Þ

lθ A
ð1Þ�
lθ þ Að1Þ

lφ Að1Þ�
lφ Þ

ck2
4π

R
r2dΩðAð1Þ

lθ Að1Þ�
lθ þ Að1Þ

lφ A
ð1Þ�
lφ Þ

¼ l
ck

¼ l
lω

¼ Npℏl

Npℏlω
: ð19Þ

Here, we have introduced Plank constant ℏ and the
number of photons Np as in the previous works [7,8].
Equation (19) clearly show that the radiation field carries
nonzero AM. Moreover, it is consistent with a quantum
mechanical picture that each photon carries lℏ AM. In the
quantum electrodynamics, vector potentials of electromag-
netic fields are considered as photon wave functions [20]. By
applying the z component of the AM operator, −iℏ∂=∂φ
[16], to the vector potential shown in Eq. (7), it is
straightforward to show that its eigenvalue is equal to lℏ,
which is consistent with Eq. (19). Here, the SAM and OAM
are not clearly separated, in contrast with a previous work
adopting the paraxial approximation [7], but in common
with other works adopting the nonparaxial approximation
[8] and also with the discussions on AM in the multipole
expansion of electromagnetic fields [16,19,21].
We have shown that the ratio of the AM density in the z

direction to the energy density is expressed in a simple form
in Eq. (19). Previous works assumed mathematical models
for the radiation field, where the polarization was treated as
a free parameter. However, in our case, we began from the
electron motion, which is counterclockwise as previously
described. Therefore, the polarization is defined by the
electron motion and not a free parameter. We see the
polarization of the radiation field from Eq. (12), which is
mostly circular polarized when the polar angle θ is small.
The direction of the polarization is identical to the electron
motion (we will call this direction positive for conven-
ience). When θ increases, the polarization becomes ellip-
tical. In other words, the field becomes a mixture of
circularly polarized components with positive and negative
helicities. When θ is π=2, it is linearly polarized, which
implies that the intensities of both helicity components are
identical. When θ is larger than π=2, the negative helicity
components becomes dominant. It should be noted that the
positive helicity component has the phase term represented
by eiðl−1Þφ and the negative eiðlþ1Þφ. We speculate that, if we
consider the z component of AM, in the former case, SAM
is þ1 and OAM is l − 1, and in the latter case, SAM is -1,
and OAM is lþ 1. In any case, the total AM is always l.
It may be instructive to consider the angular momentum

in the nonlinear inverse Compton process of circularly
polarized light, which is also an example of the radiation
from an electron in circular motion. In classical mechanics,
intense circularly polarized light induces a circular motion
of an electron. When the light is sufficiently intense, the
electron motion becomes relativistic, and higher harmonics
are radiated. In quantum mechanics, this process can be
described as a multiphoton process. Let us consider that n
photons with the energy of ℏω are coming to the electron.
Because they are circularly polarized, they bring ℏ AM for
each; therefore, they bring nℏAM to the system in total.
One photon with energy nℏω is outgoing, which implies
that the energy is conserved. However, the outgoing photon
can bring at most �ℏ AM as SAM. For the conservation of
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angular momentum, it should carry the remaining AM as
another form of AM, which is OAM. If the outgoing photon
carries ℏ as SAM, then it should carry other ðn − 1Þℏ as
OAM. When it carries −ℏ as SAM, then it should carry
ðnþ 1Þℏ as OAM. This speculation seems consistent with
the above discussion on Eq. (12).
In the Lorentz transformation, a spherical wave should

be transformed to a spherical wave. Indeed, by using
Eq. (7), it is straightforward to obtain the vector potentials
for the radiation from an electron in spiral motion that drifts
along the z axis at a relativistic speed:

Alr ¼ e
eiðkr−lωtþlφÞ

r
1

1 − βz cos θ
Jl

�
l
K
γ

sin θ
1 − βz cos θ

�

þ o

�
1

r2

�
;

Alθ ¼ e
eiðkr−lωtþlφÞ

r
cos θ − βz
1 − βz cos θ

1

sin θ
Jl

�
l
K
γ

sin θ
1 − βz cos θ

�

þ o

�
1

r2

�
;

Alφ ¼ e
eiðkr−lωtþlφÞ

r
iK=γ

1 − βz cos θ
Jl

�
l
K
γ

sin θ
1 − βz cos θ

�

þ o

�
1

r2

�
: ð20Þ

Here, βz is the electron velocity along the z axis, γ is the
Lorentz factor, and K=γ is the pitch angle of the electron
motion to the z axis. The angular frequency ω is related to
that in the electron frame ω� as follows:

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p

γð1 − βz cos θÞ
ω�: ð21Þ

By applying the operator, −iℏ∂=∂φ, to Eq. (20) as in
the discussion about Eq. (19), it is straightforward to
show that its eigenvalue is equal to lℏ; therefore, the
AM in the z direction is assured to be invariant to the
Lorentz transformation [15]. Using Eq. (21), one can derive
the electromagnetic field for a helical undulator [22,23],
inverse Compton scattering of circular polarized light [24]
or cyclotron or synchrotron radiation [17,18] with the phase
terms which represent their vortex nature.
In this paper, we have theoretically shown that the

photons radiated by an electron in a spiral motion are
twisted and carry OAM. As far as we know, this is the first
theoretical demonstration that radiation field by a single
charged particle carries well-defined OAM. This process is
one of the most fundamental radiation processes in labo-
ratories and in Nature. Therefore, we conclude that photons
with OAM are much more ubiquitous than previously
thought. They may play unexplored, important roles with
respect to their OAM. In addition, this process will be the
basis of laboratory vortex photon sources that cover the

entire wavelength range from radio waves to gamma rays,
and they will open completely new research opportunities.
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