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The interaction of light with rotating media has attracted recent interest for both fundamental and applied
studies including rotational Doppler shift measurements. It is also possible to obtain amplification through
the scattering of light with orbital angular momentum from a rotating and absorbing cylinder, as proposed
by Zel’dovich more than forty years ago. This amplification mechanism has never been observed
experimentally yet has connections to other fields such as Penrose superradiance in rotating black holes.
Here we propose a nonlinear optics system whereby incident light carrying orbital angular momentum
drives parametric interaction in a rotating medium. The crystal rotation is shown to take the phase-
mismatched parametric interaction with negligible energy exchange at zero rotation to amplification for
sufficiently large rotation rates. The amplification is shown to result from breaking of anti-PT symmetry
induced by the medium rotation.
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Introduction.—The interaction of vortex light beams
carrying orbital angular momentum (OAM) with rotating
media has been shown to lead to a series of novel
fundamental phenomena and applications. Some such as
the rotational Doppler shift have an analogue for non-
rotating light or media [1–3] while others allow new effects
such as the creation of effective magnetic fields for light
[4]. A recent study of second-harmonic generation in a
rotating crystal showed the existence of an unexpected
nonlinear analogue of the rotational Doppler effect, i.e., a
frequency shift imparted upon a beam with OAM from a
rotating crystal [5].
Zel’dovich first described the situation in which a

material cylinder that is an absorber of incident radiation
while at rest, could nonetheless amplify incident light
waves carrying optical angular momentum if the cylinder
was rotating at a high enough frequency Ω around its
axis [6,7]. In this way, energy of rotation of the medium can
be transferred to the light field, a result whose generali-
zation encompasses the extraction of energy from rotating
black holes or stars [8–11]. An elementary picture of
how the Zel’dovich effect arises may be garnered from
considering a cylinder made up of two level atoms, and
a probe field of frequency ω1 carrying OAM with
winding number m̄. In this case, the linear susceptibility
of the medium as calculated in the reference frame
rotating at frequency Ω may be written as the sum of
two Lorentzians [12]

χð1Þðω0Þ ¼
�

Njμj2=ϵ0ℏ
ω0 − ω0 − iΓ=2

þ Njμj2=ϵ0ℏ
ω0 þ ω0 þ iΓ=2

�
; ð1Þ

whereN is the number density of atoms, μ the dipole matrix
element between the two levels, ω0 being the transition
frequency, Γ is the population decay rate of the upper level,
and ω0 ¼ ðω1 − m̄ΩÞ accounts for the rotational Doppler
effect [2]. For the nonrotating case and ω0 ¼ ω1 ≃ ω0 for
near-resonant conditions, the second Lorentzian in the
square brackets may be neglected on the basis that it is
nonresonant, and this yields a net absorption. In contrast,
for a large enough rotation rate ω0 can become negative and
the second Lorentzian can become resonant and dominant.
In this case, a net gain arises since the second Lorentzian
has the opposite sign of the upper level decay rate. Gain
then becomes a possibility for ω0 < 0, i.e.,

m̄Ω > ω1; ð2Þ

which is the condition commonly quoted for observing the
Zel’dovich effect [6,7,13,14].
Here we consider a nonlinear optics realization of the

Zel’dovich effect that emerges from three-wave mixing of
ring-shaped vortex beams in a rotating second-order non-
linear crystal. We find that a light beam carrying OAM can
experience parametric amplification under a condition on
the crystal rotation rate akin to Eq. (2). The key physics is
that the rotation modifies the phase matching of the
nonlinear interaction, which is phase mismatched at zero
rotation, and triggers parametric amplification for sufficient
rotation. This amplification is shown to result from break-
ing of anti-PT symmetry induced by the rotation.
Basic geometry and equations.—Our basic model

involves propagation along the optic axis in a nonlinear
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uniaxial optical crystal: As a concrete example we choose
a crystal of point symmetry 32 as described in Ref. [15],
but the approach applies to other point symmetries such
as 3m. In our model of parametric amplification a signal
field at the fundamental frequency ω1 is incident on the
second-order nonlinear crystal along with a pump field at
the second-harmonic (SH) frequency ω2 ¼ 2ω1. In this
case, the nonlinear parametric interaction can generate an
idler field that is also at the fundamental frequency
ω3 ¼ ðω2 − ω1Þ ¼ ω1. For this geometry, it is known that
if the fundamental field is circularly polarized (same
handedness for both signal and idler) the SH field has
the opposite handedness [15]. Denoting the complex
amplitude of the circularly polarized fundamental field
and of the oppositely handed circularly polarized SH
field as A1ðx; y; zÞ and A2ðx; y; zÞ, respectively, the slowly
varying envelope equations used in Ref. [15] for the
fields take the form (for more detail see Sec. I of the
Supplemental Material [16])

∂A1

∂z ¼ i
2k1

∇2⊥A1 þ iηA2A�
1e

−iΔkz;

∂A2

∂z ¼ i
4k1

∇2⊥A2 þ iηA2
1e

iΔkz; ð3Þ

where kj ¼ njωj=c, nj ¼ noðωjÞ is the ordinary refractive
index at the selected frequency, ∇2⊥ is the transverse
Laplacian describing diffraction, η ¼ 2deffω1=n1c with
d11 the second-order nonlinear coefficient, Δk¼2k1−k2,
and we used k2 ≈ 2k1 in the SH diffraction term.
Equations (3) are the basis for our subsequent development
and coincide in form with those given by Boyd [17] and
also used in Ref. [18].
Rotating frame equations.—Our goal is to investigate the

parametric interaction between the fields in a frame rotating
at frequency Ω around the optic axis, Eqs. (3) being in the
lab frame. We note that the nonlinear terms in these
equations are invariant with respect to rotation due to
the choice of propagation along the optic axis and the use of
circular polarization states. To proceed, we state the field
equations in the rotating frame:

∂A1

∂z ¼ i
2k1

∇2⊥A1−k1
�
Ω
ω1

� ∂A1

∂ϕ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}þ iηA2A�
1e

−iΔkz;

∂A2

∂z ¼ i
4k1

∇2⊥A2−k2
�
Ω
ω2

� ∂A2

∂ϕ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}þ iηA2
1e

iΔkz; ð4Þ

with ϕ the azimuthal angle in cylindrical coordinates (ρ, ϕ,
z). The underbraced terms represent the effect of trans-
forming to the rotating frame and may be understood as
follows: If we consider either field with winding number l,
and associated azimuthal variation eilϕ, the underbraced
terms may be written generically as

−k
�
Ω
ω

� ∂A
∂ϕ≡ −ik

�
lΩ
ω

�
A ¼ iδkA;

where we have dropped the subscript j ¼ 1, 2 for sim-
plicity. Using this result in combination with Eqs. (4), we
identify the fractional change in the longitudinal wave
number as δk ¼ −ðlΩ=ωÞk for beams carrying OAM, in
agreement with Ref. [3]. Then the longitudinal wave
number in the rotating frame is k0 ¼ k½1 − ðlΩ=ωÞ�, and
there is a concomitant rotational Doppler shifted frequency
ω0 ¼ ω½1 − ðlΩ=ωÞ�. The underbraced terms in Eqs. (4)
therefore account for the rotational Doppler effect in the
rotating frame.
Perfect optical vortices.—Our proposal for the nonlinear

Zel’dovich effect (NLZE) involves the parametric inter-
action between weak signal and idler fields in the presence
of a strong SH pump field. Since the signal and idler
fields are both at the fundamental frequency, they must be
distinguished in some other way. To develop the ideas
and have an analytic theory we consider the case that all
interacting fields are perfect optical vortices (POVs)
[19,20] with a different helical phase-front winding
number m. POVs are ring-shaped beams whose radius R
is independent of winding number and the same for all
interacting fields. As shown in Sec. II of the Supplemental
Material [16], for POVs of width W, R ≫ W ≫ λ, the
slowly varying electric field envelope for a POVaround the
peak of the ring may be written as

Aðρ ¼ R;ϕ; zÞ ¼ aðzÞeimϕe−ðiz=2kÞðm2=R2Þ−ikzðmΩ=ωÞ: ð5Þ

In the second exponential on the right-hand side, the first
term describes the reduction in the z component of the wave
vector due to the ray skewing associated with the beam
OAM [21,22], and the second term accounts for the
rotational Doppler effect.
Parametric interaction of POVs.—To proceed we

assume that the pump (j ¼ 2) field is much stronger than
the signal (j ¼ 1) field. Then the parametric amplification
process, which produces one signal and one idler photon
from one pump photon, generates an idler field (j ¼ 3) that
has winding number m3 ¼ m2 −m1. Assuming all fields
are described by POVs, we then write the slowly varying
electric fields for the fundamental and second harmonic
fields, with ρ ¼ R, as

A1ðϕ; zÞ ¼ a1ðzÞeim1ϕe−ðiz=2k1Þðm2
1
=R2Þ−ik1zðm1Ω=ω1Þ

þ a3ðzÞeim3ϕe−ðiz=2k1Þðm2
3
=R2Þ−ik1zðm3Ω=ω1Þ;

A2ðϕ; zÞ ¼ a2eim2ϕe−ðiz=4k1Þðm2
2
=R2Þ−ik2zðm2Ω=ω2Þ; ð6Þ

with a2 independent of z in the undepleted pump beam
approximation, and a3ð0Þ ¼ 0 with no idler present at the
input. Here we have set k3 ¼ k1 since the signal and idler
have the same frequency and experience the same refractive
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index. In Sec. III of the Supplemental Material [16] we
show that using the fields in Eqs. (6) along with the
propagation Eqs. (4) yield the linearized signal-idler
equations in the rotating frame

da1
dz

¼ iðηa2Þa�3eiκz;
da3
dz

¼ iðηa2Þa�1eiκz; ð7Þ

where the OAM dependent wave vector mismatch is

κ ¼ −Δkþ Ωm2

c
ðn1 − n2Þ þ

ðm1 −m2=2Þ2
k1R2

≈
2

c
ðω1 − m̄ΩÞðn2 − n1Þ þ

ðm1 −m2=2Þ2
k1R2

: ð8Þ

Here m̄ ¼ m2=2 ¼ ðm1 þm3Þ=2 may be viewed as the
mean winding number of the combined signal and idler
fields. These equations may be solved for the fields at the
output of the crystal of length L [17,18]. The detailed
expressions are given in Sec. IV of the Supplemental
Material [16], with the final result that the net gain for
the fundamental field (combined signal and idler output
power over input signal power) may be expressed as

G ¼
���� coshðgLÞ − iκ

2g
sinhðgLÞ

����2 þ
���� ηa2g sinhðgLÞ

����2 ð9Þ

and the signal gain (output over input signal power) is

Gs ¼
PsðLÞ
Psig

¼
���� coshðgLÞ − iκ

2g
sinhðgLÞ

����2: ð10Þ

Here g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βIp − κ2=4

q
is the growth rate if the argument

of the square root is positive.
Nonlinear Zel’dovich effect.—From the growth rate g

above it follows that parametric amplification arises for
βIp > κ2=4, the growth rate being zero for βIp ≤ κ2=4.
Consider a situation in which for zero rotation, Ω ¼ 0, the
growth rate is zero, βIp < κ2=4. If we consider normal
dispersion so that n2 > n1 and m̄Ω > 0, then according to
Eq. (8) with a large enough rotation rate a nonzero growth
rate can arise due to rotation, that is due to the effect of
nonzero Ω reducing κ2. For illustration, if we neglect the
second term on the bottom line of Eq. (8), based on taking
the limit k1R ≫ 1, the condition for κ ¼ 0 and the maximal
growth rate becomes

ω1 ¼ m̄Ω: ð11Þ

This expression coincides with the boundary between loss
and gain in Eq. (2) found by Zel’dovich [6,7]. In our case
the probe is composed of both signal and idler fields so the
mean winding number m̄ appears, and Eq. (11) corresponds
to the peak parametric amplification.

Figure 1 shows an example of the predicted parametric
amplification at λ1 ¼ 1 μm arising from rotation for a
crystal of length L ¼ 2 mm, nonlinear coefficient
deff ¼ 0.83 pm=V, n1 ¼ 1.6; ðn2 − n1Þ ¼ 10−3, pump
intensity Ip ¼ 2 GW=cm2, and a ring radius R ¼ 16 μm.
Furthermore, we set m2 ¼ 300 and take m1 ¼ 149 giving
m3 ¼ 151. This choice implies that ðm1 −m2=2Þ ¼ 1 is
minimized in the last term in Eq. (8), while keeping m1;3
distinct and m2 ¼ 2m̄ large. Figure 1(a) shows the
predicted parametric gain factor j expð2gLÞj over the
medium length versus the rotation rate Ω. This plot is
compatible with our discussion above of the NLZE:
Since m̄ > 0, parametric amplification is possible only
for Ω > 0, thus the medium rotation and probe OAM
must be corotating for gain, in agreement with the LZE.
In addition we find the peak gain for Ωp ∼ ω1=m̄ ¼
1.2 × 1013 rad s−1. We note that at these radii, chosen so
that the rotation speed at distance R is subluminal
(0.66c), the last term in Eq. (8) is only slightly shifting
the resonance peak away from Ωp (indicated with a
vertical dashed line). A smaller radius, e.g., R ¼ 4 μm
ensures that one is in a fully nonrelativistic regime,
albeit with a resonance peak that shifts to 1.57 ×Ωp
(data not shown). The bandwidth of the parametric
amplification may be estimated using the condition for
growth −

ffiffiffiffiffiffiffi
βIp

p
< κ=2 <

ffiffiffiffiffiffiffi
βIp

p
. Then using the previous

approximation k1R ≫ 1 we obtain δΩ ≈ 2c
ffiffiffiffiffiffiffi
βIp

p
=

½ðn2 − n1Þm̄�. For the parameters used, δΩ ¼ 0.1×
1013 rad s−1 in agreement with Fig. 1(a). Note that the
factor j expð2gLÞj only shows the material gain. In
experiments aimed at revealing the NLZE, one would
inject a signal field and measure the net and signal gains
given in Eqs. (9) and (10), respectively. Figure 1(b)
shows the signal gain versus Ω (dash line) and the net
gain (solid line), signal plus idler. Thus, whether the
signal alone is detected or both the signal and idler, clear
amplification is observed over a range of positive rotation

(a)

(b)

FIG. 1. (a) Parametric gain factor j expð2gLÞj over the medium
length versus the rotation rate Ω, and (b) the signal gain Gs (dash
line) and net gain G (solid line) both as functions of the rotation
rate Ω. For these calculations m1 ¼ 149 and m2 ¼ 300. The
vertical dashed line indicates Ωp ¼ ω1=m̄ ¼ 1.2 × 1013 rad s−1.
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rates. The full-width ΔΩ for the net and signal gains is
larger than the parametric gain in Fig. 1(a), meaning that
the fields can still exchange energy even outside of the
gain region, and may be estimated by requiring κL ¼ �π
at the edges for the phase mismatch to diminish the gain.
Using, as above, the approximation k1R ≫ 1 yields
ΔΩ ≈ πc=½ðn2 − n1Þm̄L�. For the parameters used here
this yields ΔΩ ¼ 0.3 × 1013 rad s−1 in reasonable agree-
ment with Fig. 1(b).
Numerical simulations.—We performed beam propaga-

tion method (BPM) simulations in order to verify our
results, independently of the approximations employed
above. We first note that the frequency width ΔΩ given
above, when normalized to the peak rotation rate
Ωp ¼ ω1=m̄, becomes independent of the probe winding
number m̄. From the perspective of comparing with
BPM simulations it is therefore useful to look at the
probe gain versus scaled rotation rate ðΩ=ΩpÞ. This is
particularly the case since including large field winding
numbers in the BPM is computationally challenging.
Figure 2 shows the results for the gain as a function of

scaled rotation rate ðΩ=ΩpÞ using (a) the analytic theory
and (b) the BPM based on the propagation Eqs. (4) (solid
lines are the net gain G for the fundamental and dashed
lines are the gain Gs for the signal alone). For these
calculations m1 ¼ 8 and m2 ¼ 17, and the BPM simu-
lation is performed with ring beams of radius R ¼ 43 μm
as described in Ref. [18]. The fact that the analytic theory
yields higher gains is not surprising given that it is based
solely on the peak of the ring where the maximum gain
appears, whereas the BPM includes the distribution of
intensities in the fields. However, the overall qualitative
agreement between the BPM and analytic theory verifies
the ideas and theory underlying the latter.
Breaking of anti-PT symmetry.—Using the change of

variables a1;3ðzÞ ¼ b1;3ðzÞeiκz=2, Eqs. (7) may be written in
the matrix form

i
∂
∂z

�
b1
b�3

�
¼ U

�
b1
b�3

�
¼

�
κ=2 − ηa2
ηa�2 − κ=2

��
b1
b�3

�
; ð12Þ

with interaction operatorU. We may view this as analogous
to a two-state quantum system (ℏ ¼ 1) with z playing the
role of time (T) andU the Hamiltonian, with the caveat that
the Hamiltonian is not Hermitian in this case. The energy

eigenvalues of U are given by E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2=4 − βIp

q
, where

we used βIp ¼ η2ja2j2, which are either both real or both
imaginary. This is reminiscent of the class of Hamiltonians
that are non-Hermitian but can display parity-time (PT)
symmetry and yield real eigenvalues [23–25]. More spe-
cifically, following Bender et al. [26], the combined action
of the parity operator P, which interchanges 1 ↔ 3, and the
time-reversal operator T, which takes the complex con-
jugate, on the interaction operator yields ½PTU�μν ¼ U�

νμ,
with μ; ν ¼ �1 and the identifications þ1≡ 1, −1≡ 3.
Then for the case with jκ=2j ≥ ffiffiffiffiffiffiffi

βIp
p

with real eigenvalues
we find PTU ¼ −U, the real eigenvalues giving rise to a
phase-conjugate coupling between the basis states with
concomitant oscillatory dynamics. In this case the inter-
action operator displays anti-PT symmetry as recently
revealed for parametric interactions in nonlinear optics
[27]. In contrast, for the case jκ=2j < ffiffiffiffiffiffiffi

βIp
p

with imaginary
eigenvalues PTU ¼ U, and the system displays PT sym-
metry, or broken anti-PT symmetry. In this case, the
imaginary eigenvalues E ¼ �ig give rise to parametric
gain and loss. We note that phase-conjugate coupling
can also produce a net gain of an incident signal via
energy exchange, and this underpins why the signal gain in
Fig. 1(b) can occur over a full width ΔΩ that is larger than
δΩ in Fig. 1(a) for strict parametric amplification. In our
case the transition from unbroken to broken anti-PT
symmetry is accomplished by rotating the nonlinear
medium. Physically, for large enough rotation rates the
peak of the POV ring beams acts as an ergoregion from
which energy can be extracted from the rotational energy of
the medium, that must be replenished to maintain the
rotation, in the form of amplification of the probe beam.
In related earlier work, Silveirinha [28] described sponta-
neous PT symmetry breaking as the result of linear motion
of a third-order nonlinear medium, with concomitant
modulation instability and amplification. The role of PT
symmetry in wave instabilities in a cavity with rotating
walls was discussed in Ref. [29], this system having
intimate connections with the linear Zel’dovich effect.
Conclusions.—Parametric interaction in a rotating

crystal arises due to a “nonlinear" Zel’dovich effect
whereby the rotational energy of the transparent crystal
triggers parametric amplification of light signals. In the
linear Zel’dovich effect, the amplification arises from the
rotational Doppler effect changing the resonance properties
of the medium, whereas here the amplification arises from
rotation-induced changes in phase matching. As for the

(a)

(b)

FIG. 2. Signal gain Gs (dashed line) and net gain G (solid line)
both as functions of the scaled rotation rate Ω=Ωp using (a) the
analytic theory and (b) the BPM. For these calculations m1 ¼ 8
and m2 ¼ 17, all other parameters being the same as for Fig. 1.
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linear Zel’dovich effect, the m̄Ω ¼ ω1 condition leads to
rotation rates of the order of THz even for m̄ ¼ 1000.
The example considered here allowed us to explain the
physics of NLZE amplification with a relatively simple and
transparent model. Lower rotations are expected by exam-
ining other forms of medium nonlinearity, for example
stimulated scattering. In this case, the rotational Doppler
shift could be used to change an incident field tuned to the
anti-Stokes resonance at zero rotation, which experiences
loss, into a Stokes wave with accompanying gain for
sufficient rotation. For Brillouin scattering, the required
rotation frequency is related to the Brillouin frequency shift
(i.e., the frequency of the medium phonons, of the order of
1–0.1 GHz [30]) as opposed to the optical frequency. This
could bring the overall rotation frequencies towards the
experimentally accessible MHz regime [31], although more
detailed modeling will be required in order to quantitatively
verify this prediction.
Our results extend ongoing studies of the interaction of

matter with light possessing OAM. For example, OAM
may modify the microscopic interaction symmetry and the
selection rules with a single atom [32–34]. Our work shows
that beyond this, rotation of the medium may lead to a
breaking of the macroscopic parity-time symmetry of the
interaction that results in amplification of the optical beam
at the expense of the medium rotation. Observing this
amplification would not only be of importance for our
understanding of fundamental phenomena but could lead to
applications in quantum processing (through amplification
of quantum vacuum states) with potential extensions also to
plasmonics [35] or slow light systems that may further
enhance the interaction [36,37].
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