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The cross sections of e™e™ — 7"z~ h, at center-of-mass energies from 3.896 to 4.600 GeV are measured
using data samples collected with the BESIII detector operating at the Beijing Electron Positron Collider.
The cross sections are found to be of the same order of magnitude as those of eTe™ — 777~ J/y and
ete™ - nt a7y (2S), but the line shape is inconsistent with the Y states observed in the latter two modes.
Two structures are observed in the e*e™ — xt 7~ h, cross sections around 4.22 and 4.39 GeV/c?, which
we call Y(4220) and Y (4390), respectively. A fit with a coherent sum of two Breit-Wigner functions results
in a mass of (4218.4132 +0.9) MeV/c? and a width of (66.074%> 4+ 0.4) MeV for the ¥(4220), and a
mass of (4391.57¢3 4 1.0) MeV/c? and a width of (139.55,5Z & 0.6) MeV for the ¥(4390), where the
first uncertainties are statistical and the second ones systematic. The statistical significance of ¥(4220) and

Y(4390) is 100 over one structure assumption.

DOI: 10.1103/PhysRevLett.118.092002

In the last decade, a series of charmoniumlike states have
been observed at eTe~ colliders. These states challenge
the understanding of charmonium spectroscopy as well as
QCD calculations [1,2]. According to potential models,
there are five vector charmonium states between the 1D
state y(3770) and 4.7 GeV/c?, namely, the 3S, 2D, 48,
3D, and 58S states [1]. From experimental studies, besides
the three well-established structures observed in the inclu-
sive hadronic cross section [3], i.e., y(4040), w(4160), and
w(4415), five Y states, i.e., Y(4008), Y (4230), Y(4260),
Y(4360), and Y(4660) have been reported in initial
state radiation (ISR) processes ete™ — ygpan~J/y or
ete” — yrr Ty (2S) at the B factories [4—11] or in the
direct production processes at the CLEO and BESIII
experiments [12,13]. The overpopulation of structures in
this region and the mismatch of the properties between the
potential model prediction and experimental measurements
make them good candidates for exotic states. Various
scenarios have been proposed, which interpret one or some
of them as hybrid states, tetraquark states, or molecular
states [14].

The study of charmoniumlike states in different produc-
tion processes supplies useful information on their proper-
ties. The process eTe™ — 'z~ h. was first studied by
CLEO [15] at center-of-mass (c.m.) energies /s from
4.000 to 4.260 GeV. A 100 signal at 4.170 GeV and a hint
of arising cross section at 4.260 GeV were observed. Using
data samples taken at 13 c.m. energies from 3.900 to
4.420 GeV [16], BESIII reported the measurement of the
cross section of ete™ — zTx~h, [17]. Unlike the line
shape of the process eTe™ — ntz~J/y, there is a broad
structure in the high energy region with a possible local
maximum at around 4.23 GeV in ete™ — nta~h,. Based
on the CLEO measurement at /s = 4.170 GeV and the

BESIII measurement, two assumptions were made to
describe the cross section in Ref. [18]. In both assumptions,
a narrow structure exists at around 4.23 GeV, while the
situation in the high energy region is unclear due to the lack
of experimental data.

In this Letter, we present a follow-up study of ete™ —
atz~h. at c.m. energies from 3.896 to 4.600 GeV using
data samples taken at 79 energy points [19] with the BESIII
detector [20]. Two resonant structures are observed at
Vs =422 and 439 GeV [hereafter referred to as
Y(4220) and Y(4390)]. The integrated luminosity at each
energy point is measured with an uncertainty of 1.0% using
large-angle Bhabha events [21,22]. There are 17 energy
points where the integrated luminosities are larger than
40 pb~! (referred to as “XYZ data sample” hereafter), while
the integrated luminosities for the other energy points are
smaller than 20 pb~' (referred to as “R-scan data sample”
hereafter). The c.m. energies for the XYZ data sample are
measured with e"e™ — yigr /pspu 4~ events with an uncer-
tainty of +0.8 MeV [23], which is dominated by the
systematic uncertainty. A similar method is used for the
R-scan data sample with multihadron final states [24].

In this study, the £, is reconstructed via its electric-dipole
transition h, — yn, with 5. — X;, where X; is one of 16
exclusive hadronic final states: pp, 2(z"zn~), 2(K"K™),
atn KYK~, #tn pp, 3(ztzx7), 2"z )KTK,
KOK*z¥, KSK*nTntn~, KK 2%, ppa’, K'Kp,
atan, 2(at 77 )y, xta 2’2", and 2(zt 7~ x°). Here, the
K9 is reconstructed using its decay to 7=, and the z° and
n from the yy final state.

Monte Carlo (MC) simulated events are used to optimize
the selection criteria, determine the detection efficiency,
and estimate the possible backgrounds. The simulation of
the BESIII detector is based on GEANT4 [25] and includes
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the geometric description of the BESIII detector and the
detector response. For the signal process, we use an MC
sample for ete™ — xtn~h, process generated according
to phase space. ISR is simulated with KkMC [26] with a
maximum energy for the ISR photon corresponding to the
ztn~h, mass threshold.

We select signal candidates with the same method as that
described in Ref. [17]. Figure 1 shows the scatter plot of
the invariant mass of the 7. candidate vs the one of the A,
candidate and the invariant mass distribution of y#,. in the
1. signal region for the data sample at /s = 4.416 GeV.
A clear h. — yn, signal is observed. The 7, signal region is
defined by a mass window around the nominal 7, mass [3],
which is within £50 MeV/c? with efficiency about 84%
(£45 MeV/c? with efficiency about 80%) from MC
simulation for final states with only charged or K g particles
(for those including 7° or 7).

We determine the number of 7zt 7~ h, signal events (nzljs)
from the y#7, invariant mass distribution. For the XY Z data
sample, the yn. mass spectrum is fitted with the MC
simulated signal shape convolved with a Gaussian function
to reflect the mass resolution difference between the data
and MC simulation, together with a linear background.
The fit to the data sample at /s = 4.416 GeV is shown in
Fig. 1. The tail on the high mass side is due to events with
ISR (ISR photon undetected); this is simulated with KKkMC
in MC simulation, and its fraction is fixed in the fit. For
the data samples with large statistics (\/E = 4.226, 4.258,
4.358, and 4.416 GeV), the fit is applied to the 16 5, decay
modes simultaneously with the number of signal events
in each decay mode constrained by the corresponding
branching fraction [27]. For the data samples at the other
energy points, we fit the mass spectrum summed over all 7,
decay modes. For the R-scan data sample, the number of
signal events is calculated by counting the entries in the 4.

r 32
1501— _
= w31
T [ % 3
: | <
r = 29
g 100
S T 287350 355
S r M, (GeV/c?)
> [
§ 50
=
$1
nk“‘\“‘\“‘\“‘\“‘\“‘
348 3.50 3.52 3.54 3.56 3.58 3.60
M, (GeV/c?)

FIG. 1. The M, distribution in the 7. signal region of
4.416 GeV data. Points with error bars are the data and the
curves are the best fit described in the text. The inset is the scatter
plot of the mass of the 7. candidate M, vs the mass of the h,
candidate M, for the same data sample.

signal region [3.515,3.535] GeV/c? (n*2) and the entries
in the h, sideband regions [3.475,3.495] GeV/c? and
[3.555,3.575] GeV/c* (n¥%) using the formula n}™ =
n¥ie — fnide Here, the scale factor f = 0.5 is the ratio
of the size of the signal region and the background region,
and the background is assumed to be distributed linearly in
the region of interest.
The Born cross section is calculated from

obs
B __ nhl.

LI+ 81+ 1B,

}21 eiBZ(i) ’

where ”2‘:5 is the number of observed signal events, L is the
integrated luminosity, (1 + 0) is the ISR correction factor,
|1 +TI|? is the correction factor for vacuum polarization
[28], B, is the branching fraction of 4, — yn. [3], €; and
B,(i) are the detection efficiency and branching fraction
for the ith 5. decay mode [27], respectively. The ISR
correction factor is obtained using the QED calculation as
described in Ref. [29] and taking the formula used to fit the
cross section measured in this analysis after two iterations
as input. The Born cross sections are summarized in the
Supplemental Material [19] together with all numbers used
in the calculation of the Born cross sections. The dressed
cross sections (including vacuum polarization effects) are
shown in Fig. 2 with dots and squares for the R-scan and
XYZ data sample, respectively. The cross sections are of the
same order of magnitude as those of the eTe™ - nt2~J /y
and ete™ - a7y (2S) [4-12], but follow a different line
shape. The cross section drops in the high energy region,
but more slowly than for the ete™ — zt 7~ J/y process.

Systematic uncertainties in the cross section measure-
ment mainly come from the luminosity measurement, the

250 . BESIII: R-scan data sample
= BESIII: XYZ data sample
2001~ _ Fit curve: Total
Fit curve: Y(4220)
150

- Fit curve: Y(4390)
100

wn
=

>

Dressed Cross section (pb)

o
S

Vs (GeV)

FIG. 2. Fitto the dressed cross section of e"e™ — n 7~ h, with
the coherent sum of two Breit-Wigner functions (solid curve).
The dash (dash-dot) curve shows the contribution from the two
structures ¥(4220) [Y(4390)]. The dots with error bars are the
cross sections for the R-scan data sample, the squares with error
bars are the cross sections for the XY Z data sample. Here the error
bars are statistical uncertainty only.
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branching fraction of . — yn,.., and 17, — X;, the detection
efficiency, the ISR correction factor, and the fit. The
uncertainty due to the vacuum polarization is negligible.
The uncertainty in the integrated luminosity is 1% at each
energy point. The uncertainty sources for the detection
efficiency include systematic uncertainties in tracking
efficiency (1% per track), photon reconstruction (1% per
photon), and K9 reconstruction (1.2% per K9). Further
uncertainties arise from the 7°/# mass window requirement
(1% per 7° /n), the x5 requirement, 57, parameters, and line
shape, possible intermediate states in the z+h. and 7'z~
mass spectra, intermediate states in 7. decays (included in
the uncertainty from the branching fraction of 7, — X)),
and the limited statistics of the MC simulation.

The uncertainty due to the y3. requirement is estimated
by correcting the helix parameters of the simulated charged
tracks to match the resolution found in data, and repeating
the analysis [30]. Uncertainties due to the 7. parameters
and line shape are estimated by varying them in the MC
simulation. When producing MC events for the ete™ —
atx~h. process through the intermediate states Z.(3900)
or Z.(4020), the parameters of the Z.(3900) and Z.(4020)
are fixed to the average values from the published mea-
surements [11,17,31-33]. The quantum numbers of both
Z.(3900) and Z.(4020) are assumed to be J¥ = 17, The
differences in the efficiency obtained from phase space MC
samples and those with intermediate Z,. states are taken as
the uncertainties from possible intermediate states in the
n*th, system. The uncertainty from intermediate states in
the zt7~ system is estimated by reweighting the zt 7z~
mass distribution in the phase space MC sample according
to the data, and the resulting difference in the efficiency is
considered as uncertainty. The uncertainties due to data and
MC differences in the detection efficiency are determined
to be between 5.5% and 10.8%, depending on the 7, decay
modes and the c.m. energy. Combining the uncertainties for
the branching fractions of 7, decays [27], the uncertainties
for the average efficiency Y16, €;8,(i) are between 6.4%
and 9.1% depending on the c.m. energy.

The uncertainty in the ISR correction is estimated as
described in Ref. [31]. Uncertainties due to the choice of
the signal shape, the background shape, the mass reso-
lution, and fit range are estimated by changing the /. and 5,
resonant parameters and line shapes in the MC simulation,
changing the background function from a linear to a
second-order polynomial, changing the mass resolution
difference between the data and the MC simulation by 1
standard deviation, and by extending or shrinking the
fit range.

Assuming all of the sources are independent, the total
systematic uncertainty in the ztz~h, cross section meas-
urement is determined to be 9.4%-13.6% depending on the
c.m. energy. The uncertainty in 3, is 11.8% [3], common
to all energy points, and quoted separately in the cross
section measurement. Altogether, the quadratic sum of the

common systematic errors at each energy point accounts
for about 95% of the total systematic error.

A maximum likelihood method is used to fit the dressed
cross sections to determine the parameters of the resonant
structures. The likelihood is constructed taking the fluctu-
ations of the number of signal and background events into
account (the definition is described in the Supplemental
Material [19]). Assuming that the z"z~h, signal comes
from two resonances, the cross section is parametrized
as the coherent sum of two constant width relativistic
Breit-Wigner functions, i.e.,

o(m) =|B(m) %4‘ e'"B,(m) }i(ﬁr/[nj) ’
where  B;(m) = | 12H(Feel3)jrj/(m2 - sz- +iMT;)]

with j =1 or 2 is the Breit-Wigner function, and P(m)
is the three-body phase space factor. The masses M ;, the
total widths I';, the products of the electronic partial width
and the branching fraction to z*z~h, (T,.B);, and the
relative phase ¢ between the two Breit-Wigner functions
are free parameters in the fit. Only the statistical uncertainty
is considered in the fit. There are two solutions from the
fit, one of them is shown in Fig. 2. The second solution is
very close to the one shown here. This can been proved
analytically using Eq. (9) in Ref. [34], which relates
the two solutions from the fit when a sum of two coherent
Breit-Wigner functions is used. The parameters determined
from the fit are M, = (4218.413) MeV/c?, T =
(66.0743*)MeV, and (T, B), = (4.6"77)eV for Y (4220),
M, = (4391.5783) MeV/c2, T, = (139.55,52) MeV, and
(T..B), = (11.613Y) eV for Y (4390). The relative phase ¢
is (3.1707) rad. The correlation matrix of the fit parameters
shows large correlation between the (I, B) ; and ¢ (see
Supplemental Material [19]).

The likelihood contours in the mass and width planes
for Y(4220) and Y(4390) are shown in Fig. 3, together
with the positions of Y(4230), Y(4260), Y(4360), and
y(4415) with the parameters taken from the latest PDG
average [3]. The low-lying resonance from the study of
ete” — nta~J/y at BESIII [35], marked as Y (4260)BESII
in the plot, is also compared. Y (4260), Y(4360), and
y(4415) are located outside the 3¢ contours, while
Y(4230) and Y(4260)BESIT are overlapped with the 3o
contour of Y (4220).

Fitting the dressed cross section with only one
resonance yields a worse result, the change of the like-
lihood value from two resonances to one resonance is
[A(=2InL) = 113.5]. Taking the change in the number of
degrees of freedom (4) into account, the significance for the
assumption of two resonant structures over the assumption
of one resonant structure is 10c. The fit with the coherent
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FIG. 3. The likelihood contours in the mass and width planes
for Y (4220) (left panel) and Y (4390) (right panel). The filled
areas are up to 3¢ likelihood contours and the dots with error bars
are the locations of Y or y states. The parameters of ¥ (4260)PP¢
are taken from the PDG average [3] and Y (4260)BES™ from the
measurement of ete™ — 77 z~J/y at BESIII [35].

sum of one Breit-Wigner function and a phase space term
gives a worse result as well, the change of the likelihood
value is [A(=21n L) = 66.8]. We also fit the cross section
with the coherent sum of three Breit-Wigner functions, or
the coherent sum of two Breit-Wigner functions and a
phase space term. Both assumptions improve the fit quality,
but the significances of the third resonance and the phase
space term are only 2.60 and 2.9¢, respectively.

The systematic uncertainties in the resonance parameters
mainly come from the absolute c.m. energy measurement,
the c.m. energy spread, and the systematic uncertainty
on the cross section measurement. The uncertainty from the
c.m. energy measurement includes the uncertainty of the
c.m. energy and the assumption made in the measurement
for the R-scan data sample. Because of the low statistics at
each energy point in the R-scan data sample, we approxi-
mate the difference between the requested and the actual
c.m. energy by a common constant. To assess the system-
atic uncertainty connected with this assumption, we replace
the constant by a c.m. energy-dependent second-order
polynomial. The systematic uncertainty of the c.m. energy
is common for all the energy points in the two data samples
and will propagate to the mass measurement (0.8 MeV).
The changes on the parameters are taken as uncertainty.
The uncertainty from c.m. energy spread is estimated by

TABLE L.

convoluting the fit formula with a Gaussian function with a
width of 1.6 MeV, which is beam spread, measured by the
Beam Energy Measurement System [36]. The uncertainty
from the cross section measurement is divided into two
parts. The first one is uncorrelated among the different c.m.
energy points and comes mainly from the fit to the yn,
invariant mass spectrum to determine the signal yields.
The corresponding uncertainty is estimated by including
the uncertainty in the fit to the cross section, and taking
the differences on the parameters as uncertainties. The
second part includes all the other sources, is common for all
data points (14.8%), and only affects the I',, 5 measure-
ment. Table I summarizes the systematic uncertainty in the
resonance parameters.

In summary, we measure the ete™ — xtz~h. Born
cross section using data at 79 c.m. energy points from
3.896 to 4.600 GeV. Assuming the ztz~h, events come
from two resonances, we obtain M = (4218.41@?4’55 +
0.9) MeV/c?, T = (66.073%° = 0.4) MeV, and (T, B) =
(46777 +£0.8) eV for Y(4220), and M = (4391.5753 +
1.0) MeV/c?, T = (139.5)62 £ 0.6) MeV, and (T, B) =
(11.6739 £1.9) eV for ¥(4390), with a relative phase of
¢ = (3.170J £ 0.2) rad. The first errors are statistical
and the second are systematic. The parameters of these
structures are different from those of Y(4260), Y(4360),
and y(4415) [3]. The resonance parameters of Y(4220)
are consistent with those of the resonance observed in
ete” = wyqo [13].

The two resonances observed in et e~ — z 7~ h, process
are located in the mass region between 4.2 and 4.4 GeV/c?,
where the vector charmonium hybrid states are predicted
from various QCD calculations [37-39]. The mass of
Y(4220) is lower than that of Y(4260) observed in the
ete™ - nn~J/y process. The smaller mass is consistent
with some of the theoretical calculations for the mass of
Y (4260) when explaining it as a D; D molecule [40,41].
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The systematic uncertainty in the measurement of the resonance parameters. c.m. energy , represent the uncertainty from

the systematic uncertainty of c.m. energy measurement and the assumption made in the c.m. energy measurement for R-scan data
sample, respectively. Cross section, ;) represents the uncertainty from the systematic uncertainties of the cross section measurement

which are un-correlated (common) in each energy point.

Y (4220) Y(4390)
Sources M (MeV/c?) I' MeV) (T,.B) (V) M (MeV/c?) I' MeV) (T,.B) (eV) ¢ (rad)
c.m. energy ) 0.8(0.1) —(0.1) —(0.2) 0.8(0.1) —(0.2) —(0.3) —(0.1)
c.m. energy spread 0.1 0.3 0.3 0.1 0.1 0.7 0.1
Cross section,,) 0.1(-) —(=) 0.2(0.7) 0.6(-) 0.5(-) 0.4(1.7) 0.1(-)
Total 0.9 0.4 0.8 1.0 0.6 1.9 0.2
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