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The cross section for the process e*e™ — n'z~J/y is measured precisely at center-of-mass energies
from 3.77 to 4.60 GeV using 9 fb~! of data collected with the BESIII detector operating at the BEPCII
storage ring. Two resonant structures are observed in a fit to the cross section. The first resonance has a
mass of (4222.0 3.1 & 1.4) MeV/c? and a width of (44.1 4- 4.3 4-2.0) MeV, while the second one has a
mass of (4320.0 & 10.4 £ 7.0) MeV/c? and a width of (101.41%3 4 10.2) MeV, where the first errors are
statistical and second ones are systematic. The first resonance agrees with the Y (4260) resonance reported
by previous experiments. The precision of its resonant parameters is improved significantly. The second
resonance is observed in ete™ — xtz~J /y for the first time. The statistical significance of this resonance
is estimated to be larger than 7.66. The mass and width of the second resonance agree with the ¥ (4360)
resonance reported by the BABAR and Belle experiments within errors. Finally, the ¥(4008) resonance
previously observed by the Belle experiment is not confirmed in the description of the BESIII data.

DOI: 10.1103/PhysRevLett.118.092001

The process eTe™ — ntx~J/y at center-of-mass (c.m.)
energies between 3.8 and 5.0 GeV was first studied by the
BABAR experiment using an initial-state-radiation (ISR)
technique [1], and a new structure, the ¥ (4260), was reported
with a mass around 4.26 GeV/c?. This observation was
immediately confirmed by the CLEO [2] and Belle experi-
ments [3] in the same process. In addition, the Belle experi-
ment reported an accumulation of events at around 4 GeV,
which was called Y (4008) later. Although the Y (4008) state
is still controversial—a new measurement by the BABAR
experiment does not confirm it [4], while an updated
measurement by the Belle experiment still supports its
existence [5]—the observation of the Y states has stimulated
substantial theoretical discussions on their nature [6,7].

Being produced in e™ e~ annihilation, the Y states have
quantum numbers J©¢ = 17~. However, unlike the known
17~ charmonium states in the same mass range, such as
w(4040), w(4160), and w(4415) [8], which decay pre-
dominantly into open charm final states [D®*)D*)], the ¥
states show strong coupling to hidden-charm final states
[9]. Furthermore, the observation of the states Y (4360) and
Y(4660) in ete™ — nta~y(2S) [10], together with the
newly observed resonant structures in ete™ — wy.o [11]
and eTe” — xta~h, [12], overpopulates the vector char-
monium spectrum predicted by potential models [13]. All
of this indicates that the Y states may not be conventional
charmonium states, and they are good candidates for new
types of exotic particles, such as hybrids, tetraquarks, or
meson molecules [6,7].

The Y(4260) state was once considered a good hybrid
candidate [14], since its mass is close to the value predicted
by the flux tube model for the lightest hybrid charmonium

[15]. Recent lattice calculations also show a 17~ hybrid
charmonium could have a mass of 42854 14 MeV/c?
[16] or 4.33(2) GeV/c* [17]. Meanwhile, the diquark-
antidiquark tetraquark model predicts a wide spectrum of
states which can also accommodate the Y(4260) [18].
Moreover, the mass of ¥ (4260) is near the mass threshold
of Di*D}~, DD,, DyD*, and f,(980)J/y, and Y (4260)
was supposed to be a meson molecule candidate of these
meson pairs [19,20]. A recent observation of a charged
charmoniumlike state Z,.(3900) by BESIII [21], Belle [5],
and with CLEO data [22] seems to favor the DD, meson
pair option [19]. Another possible interpretation describes
the Y(4260) as a heavy charmonium (J/y) being bound
inside light hadronic matter—hadrocharmonium [23]. To
better identify the nature of the Y states and distinguish
various models, more precise experimental measurements,
including the production cross section and the mass and
width of the Y states, are essential.

In this Letter, we report a precise measurement of the
ete™ - ntnJ/y cross section at ete” c.m. energies
from 3.77 to 4.60 GeV, using a data sample with an
integrated luminosity of 9.05 fb~! [24] collected with the
BESIII detector operating at the BEPCII storage ring
[25]. The J/w candidate is reconstructed with its leptonic
decay modes (u*u~ and ete™). The data sample used in
this measurement includes two independent data sets. A
high luminosity data set (dubbed “XYZ data”) contains
more than 40 pb~! at each c.m. energy with a total
integrated luminosity of 8.2 fb~!, which dominates the
precision of this measurement, and a low luminosity data
set (dubbed “scan data”) contains about 7-9 pb~! at each
c.m. energy with a total integrated luminosity of 0.8 fb~!.
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The integrated luminosities are measured with Bhabha
events with an uncertainty of 1% [24]. The c.m. energy of
each data set is measured using dimuon events, with an
uncertainty of £0.8 MeV [26].

The BESIII detector is described in detail elsewhere [25].
The GEANT4-based [27] Monte Carlo (MC) simulation
software package BOOST [28], which includes the geometric
description of the BESIII detector and the detector response,
is used to optimize event selection criteria, determine the
detection efficiency, and estimate the backgrounds. For the
signal process, we generate 60 000 e e~ — 7"z~ J /y events
at each c.m. energy of the XY Z data, and an extrapolation is
performed to the scan data with nearby c.m. energies. At
ete” c.m. energies between 4.189 and 4.358 GeV, the signal
events are generated according to the Dalitz plot distributions
obtained from the data set at corresponding c.m. energy, since
there is significant Z.(3900) production [5,21,22]. At other
c.m. energies, signal events are generated using an EVTGEN
[29] phase space model. The J /y decaysintou™u~ and e™e™
with the same branching fractions [8]. The ISR is simulated
with KKMC [30], and the maximum ISR photon energy is set
to correspond to a 3.72 GeV/c? production threshold of the
#tn~J/y system. Final-state radiation (FSR) is simulated
with PHOTOS [31]. Possible background contributions are
estimated with KKMC-generated inclusive MC samples
[ete™ — efe™, uhu™, 777, vy, riseJ /¥ nisw (2S), and
qq with g = u, d, s, c] with comparable integrated lumi-
nosities to the XY Z data.

Events with four charged tracks with zero net charge are
selected. For each charged track, the polar angle in the drift
chamber must satisfy |cosf| < 0.93, and the point of
closest approach to the ete™ interaction point must be
within 10 cm in the beam direction and within 1 cm in the
plane perpendicular to the beam direction. Taking advan-
tage of the fact that pions and leptons are kinematically well
separated in the signal decay, charged tracks with momenta
larger than 1.06 GeV/c in the laboratory frame are
assumed to be leptons, and the others are assumed to be
pions. We use the energy deposited in the electromagnetic
calorimeter (EMC) to separate electrons from muons. For
both muon candidates, the deposited energy in the EMC is
required to be less than 0.35 GeV, while for both electrons,
it is required to be larger than 1.1 GeV. To avoid systematic
errors due to unstable operation, the muon system is not
used here. Each event is required to have one n* 7~ ¢ ¢~
(¢ = e or u) combination.

To improve the momentum and energy resolution and to
reduce the background, a four-constraint kinematic fit
is applied to the event with the hypothesis ete™ —
atx~¢*¢~, which constrains the total four-momentum
of the final state particles to that of the initial colliding
beams. The y?/n.d.f. of the kinematic fit is required to be
less than 60/4.

To suppress radiative Bhabha and radiative dimuon
(eTe” — yeTe™/yuTu~) backgrounds associated with

photon conversion to an eTe~ pair which subsequently
is misidentified as a z "z~ pair, the cosine of the opening
angle of the pion-pair (cos 6+ ,-) candidates is required to
be less than 0.98 for both J/y — up~ and e*e™ events.
For J/y — ete™ events, since there are more abundant
photon sources from radiative Bhabha events, we further
require the cosine of the opening angles of both pion-
electron pairs (cos@,:,+) to be less than 0.98. These
requirements remove almost all of the Bhabha and dimuon
background events, with an efficiency loss of less than 1%
for signal events.

After imposing the above selection criteria, a clear J/y
signal is observed in the invariant mass distribution of the
lepton pairs [M (£ £~ )]. The mass resolution of the M (£+£~)
distribution is estimated to be (3.740.2) MeV /c? for J /yr —
uu~ and (3.9 £0.3) MeV/c? for J/w — ete™ in data
for the range of c.m. energies investigated in this study. The
J/w mass window is defined as 3.08 < M(¢£1¢7) <
3.12 GeV/c?. In order to estimate the non-J /y background
contribution, we also define the J/w mass sideband as
3.00<M(£+¢7)<3.06GeV/c? and 3.14 < M(£1¢7) <
3.20 GeV/c?, which is 3 times as wide as the signal region.
The dominant background comes from et e~ = ¢g (¢ = u,
d, s) processes, such as eTe” —» "z x 7. Since qg
events form a smooth distribution in the J/y signal region,
their contribution is estimated by the J/w mass sideband.
Contributions from backgrounds related with charm quark

production, such as e™e™ — nJ /y [32], D® D™ and other
open-charm mesons, are estimated to be negligible accord-
ing to MC simulation studies.

In order to determine the signal yields, we make use of
both fitting and counting methods on the M(£*¢7) dis-
tribution. In the XYZ data, each data set contains many
signal events, and an unbinned maximum likelihood fit
to the M (£ ¢™) distribution is performed. We use a MC
simulated signal shape convolved with a Gaussian function
(with standard deviation 1.9 MeV, which represents the
resolution difference between the data and the MC simu-
lation) as the signal probability density function (PDF) and
a linear term for the background. For the scan data, due to
the low statistics, we directly count the number of events in
the J/y signal region and that of the normalized back-
ground events in the J/w mass sideband and take the
difference as the signal yields.

The cross section of eTe™ — ztx~J/y at a certain
ete” c.m. energy /s is calculated using

Nsig

W) = o

(1)

where N2 is the number of signal events, L, is the
integrated luminosity of data, 1 4 & is the ISR correction
factor, € is the detection efficiency, and B is the branching
fraction of J/y — £7¢~ [8]. The ISR correction factor is
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coherent sum of three Breit-Wigner functions (red solid curves) and the coherent sum of an exponential continuum and two Breit-
Wigner functions (blue dashed curves). Dots with error bars are data.

calculated using the KkMC [30] program. To get the correct
ISR photon energy distribution, we use the /s-dependent
cross section line shape of the e™e™ — 7z~ J/y process,
ie., o(y/s), to replace the default one of KkMC. Since
o(+/s) is what we measure in this study, the ISR correction
procedure needs to be iterated, and the final results are
obtained when the iteration converges. Figure 1 shows the
measured cross section ¢(4/s) from both the XYZ data and
scan data (numerical results are listed in Supplemental
Material [33]).

To study the possible resonant structures in the e*e™ —
atn~J/y process, a binned maximum likelihood fit is
performed simultaneously to the measured cross section
o(+/s) of the XY Z data with Gaussian uncertainties and the
scan data with Poisson uncertainties. The PDF is para-
meterized as the coherent sum of three Breit-Wigner
functions, together with an incoherent y(3770) component
which accounts for the decay of y(3770) —» 7z~ J/y,
with y(3770) mass and width fixed to PDG [8] values.
Because of the lack of data near the y(3770) resonance, it
is impossible to determine the relative phase between the
w(3770) amplitude and the other amplitudes. The ampli-
tude to describe a resonance R is written as

A5) = M V12T Taby q;((ﬁ)e"’ﬁ’ o)

Vs s —M? + iMT,

where M, I'y,, and I',+,- are the mass, full width, and
electronic width of the resonance R, respectively; By is the
branching fraction of the decay R — n" 7~ J /y; ®(/s) is
the phase space factor of the three-body decay R —
xtn~J/w [8]; and ¢ is the phase of the amplitude. The
fit has four solutions with equally good fit quality [34] and
identical masses and widths of the resonances (listed in
Table I), while the phases and the product of the electronic
widths with the branching fractions are different (listed in
Table II). Figure 1 shows the fit results. The resonance R,
has a mass and width consistent with that of Y (4008)
observed by Belle [5] within 1.06 and 2.96, respectively.

The resonance R, has a mass 4222.0 & 3.1 MeV/¢?, which
agrees with the average mass, 4251 &= 9 MeV/c? [8], of the
Y(4260) peak [1-5] within 3.0c. However, its measured
width is much narrower than the average width, 120 £+
12 MeV [8], of the Y(4260). We also observe a new
resonance Rj. The statistical significance of R3 is estimated
to be 7.9¢ (including systematic uncertainties) by compar-
ing the change of A(=21n L) = 74.9 with and without the
R; amplitude in the fit and taking the change of number of
degree of freedom An.d.f. = 4 into account. The fit quality
is estimated using a y’-test method, with y?/n.d.f. =
93.6/110. Fit models taken from previous experiments
[1-5] are also investigated and are ruled out with a
confidence level equivalent to more than 5.4c.

As an alternative description of the data, we use an
exponential [35] to model the cross section near 4 GeV as in
Ref. [4] instead of the resonance R;. The fit results are
shown as dashed lines in Fig. 1. This model also describes
the data very well. A y? test to the fit quality gives
y*/n.d.f. =93.2/111. Thus, the existence of a resonance
near 4 GeV, such as the resonance R, or the Y(4008)
resonance [3], is not necessary to explain the data. The fit
has four solutions with equally good fit quality [34] and

TABLE I. The measured masses and widths of the resonances
from the fit to the ete™ — n"x~J/y cross section with three
coherent Breit-Wigner functions. The numbers in the brackets
correspond to a fit by replacing R, with an exponential describing
the continuum. The errors are statistical only.

Parameters Fit result

M(R;) 3812.67512 ()
Coi(R;) 476.91 5% ()

M(R,) 4222.0 + 3.1 (4220.9 +2.9)
Toi(R>) 441443 (44.1+£3.8)
M(R5) 4320.0 & 10.4 (4326.8 + 10.0)
Lot (Rs) 10147353 (98.21354)
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TABLE II.

The values of '+ ,- B(R = ztz~J /w) (in eV) from a fit to the eTe™ — z7~J /y cross section. ¢, and ¢, (in degrees) are

the phase of the resonance R, and R5, and the phase of resonance R (or continuum) is set to 0. The numbers in the brackets correspond
to the fit by replacing resonance R; with an exponential to describe the continuum. The errors are statistical only.

Parameters Solution I Solution II Solution IIT Solution IV
Lot - Blw(3770) — ntz=J /y] 0.54+0.1 (0.4 £0.1)
Toio B(Ry = nta™J/y) 8.85)3 (- 68511 () 72508 () 5.6775 ()

T,--B(Ry » 7~ ) 13.3 £ 1.4 (12.0 + 1.0)
T,,-BRy > ntaJ/y) 21.1+£3.9 (17.9 £3.3)
b —58 £ 11 (=33 £8)

b —156 +£5 (~132 £3)

9.2+£0.7 (8.9 £ 0.6)
L7508 (1159
1161, (=817

68 + 24 (107 £ 20)

23406 (2.1 +0.4)
13.3733 (12.41]9)
6534 (8111%)
—115%" (=951¢

1.6£0.4 (1.5+0.3)
1.1194 (0.8 £0.3)
8+ 13(33+9)
110 4 16 (144 + 14)

identical masses and widths of the resonances (listed in
Table I), while the phases and the product of the electronic
widths with the branching fractions are different (listed in
Table II). We observe the resonance R, and the resonance
R; again. The statistical significance of resonance Rj in
this model is estimated to be 7.60 (including systematic
uncertainties) [A(—21n £) = 70.7, An.d.f. = 4] using the
same method as above.

The systematic uncertainty for the cross section meas-
urement mainly comes from uncertainties in the luminosity,
efficiencies, radiative correction, background shape, and
branching fraction of J/y — £7¢~. The integrated lumi-
nosities of all the data sets are measured using large angle
Bhabha scattering events, with an uncertainty of 1% [24].
The uncertainty in the tracking efficiency for high momen-
tum leptons is 1% per track. Pions have momenta that range
from 0.1 to 1.06 GeV/c, and their momentum-weighted
tracking efficiency uncertainty is also 1% per track. For the
kinematic fit, we use a similar method as in Ref. [36] to
improve the agreement of the y* distribution between the
data and MC simulation, and the systematic uncertainty for
the kinematic fit is estimated to be 0.6% (1.1%) for u™*u~
(et e™) events. For the MC simulation of signal events, we
use both the 7£Z.(3900)F model [5,21,22] and the phase
space model to describe the eTe™ — xtn~J/y process.
The efficiency difference between these two models is
3.1%, which is taken as systematic uncertainty due to the
decay model.

The efficiencies for the other selection criteria, the
trigger simulation, the event start time determination,
and the FSR simulation, are quite high (>99%), and their
systematic errors are estimated to be less than 1%. In the
ISR correction procedure, we iterate the cross section
measurement until (14 §)e converges. The convergence
criterion is taken as the systematic uncertainty due to the
ISR correction, which is 1%. We obtain the number of
signal events by either fitting or counting events in the
M(£*¢7) distribution. The background shape is described
by a linear distribution. Varying the background shape from
a linear shape to a second-order polynomial causes a 1.6%

(2.1%) difference for the J/y signal yield for the p*pu~
(e™e™) mode, which is taken as the systematic uncertainty
for the background shape. The branching fraction of
J/w — £1¢~ is taken from PDG [8], and the errors are
0.6% for both J/w decay modes. Assuming all the sources
of systematic uncertainty are independent, the total sys-
tematic uncertainties are obtained by adding them in
quadrature, resulting in 5.7% for the u"u~ mode and
5.9% for the eTe™ mode.

In both fit scenarios to the ete™ — zta~J/w cross
section, we observe the resonance R, and R;. Since we
cannot distinguish the two scenarios from the data, we take
the difference in mass and width as the systematic uncer-
tainties, ie., 1.1(6.8) MeV/c? for the mass and 0.0
(3.2) MeV for the width of R,(R3). The absolute c.m.
energies of all the data sets were measured with dimuon
events, with an uncertainty of £0.8 MeV. Such a kind of
common uncertainty will propagate only to the masses of
the resonances with the same amount, i.e., £0.8 MeV/ 2.
In both fits, the y(3770) amplitude was added incoherently.
The possible interference effect of the y(3770) component
was investigated by adding it coherently in the fit with
various phases. The largest deviation of the resonant
parameters between the fits with and without interference
for the w(3770) amplitude is taken as a systematic error,
which is 0.3 (1.3) MeV/c? for the mass and 2.0 (9.7) MeV
for the width of the R,(R;3) resonance. Assuming all the
systematic uncertainties are independent, we get the total
systematic uncertainties by adding them in quadrature,
which is 1.4(7.0) MeV/c? for the mass and 2.0
(10.2) MeV for the width of R,(R3), respectively.

In summary, we perform a precise cross section meas-
urement of e e~ — 2~ J /y for c.m. energies from /s =
3.77 to 4.60 GeV. Two resonant structures are observed,
one with a mass of (4222.0+ 3.1+ 1.4) MeV/c? and
a width of (44.1 £4.3 £2.0) MeV and the other with a
mass of (4320.0 +10.4 +7.0) MeV/c? and a width of
(101.47753 4+ 10.2) MeV, where the first errors are stat-
istical and the second ones are systematic. The first
resonance agrees with the Y(4260) resonance reported
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by BABAR, CLEO, and Belle [1-5]. However, our mea-
sured width is much narrower than the Y(4260) average
width [8] reported by previous experiments. This is thanks
to the much more precise data from BESIII, which results
in the observation of the second resonance. The second
resonance is observed for the first time in the process
ete™ - ntnJ/y. Its statistical significance is estimated
to be larger than 7.66. The second resonance has a mass and
width comparable to the Y (4360) resonance reported by
Belle and BABAR in ete™ — zta y(2S) [10]. If we
assume it is the same resonance as the Y(4360), we
observe a new decay channel of Y(4360) - 7tz J/w
for the first time. Finally, we cannot confirm the existence
of the Y(4008) resonance [3,5] from our data, since a
continuum term also describes the cross section near 4 GeV
equally well.
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