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We revisit the calculation of holographic correlation functions in type-IIB supergravity on AdS5 × S5.
Results for four-point functions simplify drastically when expressed in Mellin space. We conjecture a
compact formula for the four-point functions of one-half Bogomol’nyi-Prasad-Sommerfield single-trace
operators of arbitrary weight. Our methods rely on general consistency conditions and eschew detailed
knowledge of the supergravity effective action.
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Introduction.—Despite almost two decades of relentless
efforts, we are still far from harnessing the full computa-
tional power of the AdS/CFT correspondence. In the
canonical duality [1–3] between N ¼ 4 super Yang-Mills
(SYM) theory and type-IIB string theory on AdS5 × S5, the
bulk description is most tractable in the classical super-
gravity regime, which describes planar SYM theory at large
’t Hooft coupling. Supergravity is, however, still a compli-
cated nonlinear theory, and only the simplest observables
have been computed so far. In this Letter we revisit the
holographic calculation of four-point correlation functions
of one-half Bogomol’nyi-Prasad-Sommerfield (BPS)
single-trace operators [4]. In the supergravity limit, there
is a straightforward algorithm that computes them as a sum
of tree-level Witten diagrams, whose vertices are encoded
in the AdS5 effective action [8] obtained by Kaluza-Klein
(KK) reduction of type-IIB supergravity on S5.
The difficulty of the calculation grows quickly with the

KK level and complete results are only available for a
handful of four-point correlators. There are some hints that
final answers are simpler than the intermediate calculations.
For example, evaluating the four-point function of the
lowest KK mode (corresponding to the stress-tensor super-
multiplet) is a nontrivial task [9,10], but the result can be
written as a single quartic Witten diagram [11]. One is
tempted to draw an analogy with tree-level gluon scattering
amplitudes in 4d Yang-Mills theory, where the traditional
Feynman diagram expansion hides the true simplicity of the
on-shell answer [12]. Moreover, it is our belief that holo-
graphic n-point functions of arbitrary KK modes must be
completely fixed by general consistency requirements such
as superconfomal symmetry and crossing—this is a restate-
ment of uniqueness of the two-derivative action of 10d
type-IIB supergravity (up to field redefinitions). It must
then be possible to bypass the diagrammatic expansion
altogether and directly bootstrap the holographic correla-
tors. The natural language for such an approach is the
Mellin representation of conformal field theory (CFT)
correlators, initiated by Mack [14] and developed in
Refs. [15–20]. In Mellin space, tree-level AdS5 correlators

are rational functions of Mandelstam-like invariants, with
poles and residues controlled by factorization, in direct
analogy with tree-level scattering amplitudes in flat space.
In this Letter we report an elegant formula for the

four-point function of arbitrary single-trace one-half
BPS operators in the supergravity limit. We have discov-
ered a simple expression that satisfies all consistency
conditions and reproduces all explicitly calculated exam-
ples [10,21–24]. We believe that this is the unique solution
of our bootstrap problem, but a complete proof of unique-
ness is presently lacking.
Superconformal symmetry.—Let us first review the

constraints of superconformal invariance. We focus on one-

half BPS local operators, O
I1…Ip
p ðxÞ¼TrXfI1…XIpgðxÞ,

Ik¼1;…;6, in the symmetric-traceless representation of
the SOð6Þ R symmetry. It is convenient to keep track of
the R-symmetry structure by contracting the SOð6Þ indices
with a null vector:

Opðx; tÞ ¼ tI1…tIpO
I1…Ip
p ðxÞ; t · t ¼ 0: ð1Þ

The four-point correlator

Gp1p2p3p4
¼ hOp1

Op2
Op3

Op4
i ð2Þ

is then a function of the four spacetime coordinates xi and
of the four “internal” coordinates ti. Invariance under the
conformal group SOð4; 2Þ and R-symmetry group SOð6Þ
implies that it is really a function of conformal cross ratiosU
and V and of R-symmetry cross rations σ and τ, up to a
kinematic prefactor [25]:

Gðxi; tiÞ ¼
Y
i<j

�
tij
x2ij

�
γ0ij
�
t12t34
x212x

2
34

�
L
GðU;V; σ; τÞ; ð3Þ

where xij ¼ xi − xj, tij ¼ ti · tj and

U ¼ ðx12Þ2ðx34Þ2
ðx13Þ2ðx24Þ2

; V ¼ ðx14Þ2ðx23Þ2
ðx13Þ2ðx24Þ2

;

σ ¼ t13t24
t12t34

; τ ¼ t14t23
t12t34

: ð4Þ
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The exponents γ0ij are given by

γ012 ¼
p1 þ p2 − p3 − p4

2
; γ013 ¼

p1 þ p3 − p2 − p4

2
;

γ034 ¼ γ024 ¼ 0; γ014 ¼ p4 − L;

γ023 ¼ p4 − L −
p1 þ p4 − p2 − p3

2
: ð5Þ

Finally, the exponent L is defined as follows. Assuming
without loss of generality p1 ≥ p2 ≥ p3 ≥ p4, we distin-
guish two cases:p1 þ p4 ≤ p2 þ p3 (case I) andp1 þ p4 >
p2 þ p3 (case II). Then [26],

L ¼ p4 ðcase IÞ;
L ¼ p2 þ p3 þ p4 − p1

2
ðcase IIÞ: ð6Þ

It immediately follows from these definitions that
GðU;V; σ; τÞ is a degree L polynomial in σ and τ:

GðU;V; σ; τÞ ¼
X

0≤mþn≤L
σmτnGðm;nÞðU;VÞ: ð7Þ

Invariance under the full superconformal symmetry
PSUð2; 2j4Þ further implies the Ward identity [27,28],

∂ z̄½Gðzz̄;ð1−zÞð1− z̄Þ;αᾱ;ð1−αÞð1− ᾱÞÞjᾱ→1=z̄� ¼ 0; ð8Þ

where we have performed the useful change of variables
U ¼ zz̄, V ¼ ð1 − zÞð1 − z̄Þ, σ ¼ αᾱ, τ ¼ ð1 − αÞð1 − ᾱÞ.
Its solution can be written as [27,28]

GðU;V; σ; τÞ ¼ GfreeðU;V; σ; τÞ þ RHðU;V; σ; τÞ; ð9Þ
where Gfree is the answer in free SYM theory and

R ¼ τ1þ ð1 − σ − τÞV þ ð−τ − στ þ τ2ÞU
þ ðσ2 − σ − στÞUV þ σV2 þ στU2

¼ ð1 − zαÞð1 − z̄αÞð1 − zᾱÞð1 − z̄ ᾱÞ: ð10Þ
All dynamical information is contained in the a priori
unknown function HðU;V; σ; τÞ.
Mellin.—The Mellin amplitude M is defined as [14]

Mðs; t; σ; τÞ ¼ Mðs; t; σ; τÞ
Γp1p2p3p4

; ð11Þ

where

Mðs; t; σ; τÞ ¼
Z

∞

0

dVV−t=2þðminfp1þp4;p2þp3g=2Þ−1

×
Z

∞

0

dUU−s=2þðp3þp4Þ=2−L−1

× GconnðU;V; σ; τÞ ð12Þ
is an integral transform of the connected four-point
function with respect to the conformal cross ratios, and

Γp1p2p3p4
¼ Γ

�p1 þ p2 − s
2

�
Γ
�p3 þ p4 − s

2

�
× Γ

�p2 þ p3 − t
2

�
Γ
�p1 þ p4 − t

2

�
× Γ

�p1 þ p3 − u
2

�
Γ
�p2 þ p4 − u

2

�
: ð13Þ

We have also defined

u ¼ p1 þ p2 þ p3 þ p4 − s − t: ð14Þ
Mack [14] observed that M behaves in some ways as an S
matrix, with the dual variables s, t, u playing the role of
Mandelstam invariants. Its analytic structure is very simple:
for fixed t, the so-called reduced Mellin amplitude M has
simple poles in s; each pole corresponds to an intermediate
operator exchanged in the s-channel operator product
expansion (OPE) of the four-point function. Organizing
operators in conformal families, each exchanged primary of
dimension Δ and spin J contributes an infinite sequence
of pole at s ¼ τ þ 2m, where τ ¼ Δ − J is the twist and
m ∈ Zþ. Analogous statements hold in the crossed
channels.
As pointed out by Penedones [15], definition Eq. (11) is

completely natural in a large N theory: dividing by Γp1p2p3p4

removes the poles associated with double-trace operators,
leaving in M only single-trace poles. Recall that Gconn is
subleadingat largeNwith respect to the disconnected part—it
isOð1=N2Þ in SUðNÞ SYM theory. It receives contributions
from both single-trace operators and double-trace operators.
For example, in the s-channel OPE ðx12;x34→ 0Þ there are
double-trace operators of the schematic form Op1

∂J
□

nOp2
,

of twist τ ¼ p1 þ p2 þ 2nþOð1=N2Þ, and Op3
∂J
□

nOp4
,

of twist τ ¼ p3 þ p4 þ 2nþOð1=N2Þ. Their contribution is
precisely captured by the first two Gamma functions in
Eq. (13), while the other Gamma functions serve the same
purpose in the t and u channels [29].
We are interested in further taking the ’t Hooft coupling λ

to infinity. This regime is described in the bulk by classical
supergravity. The only single-trace operators that survive in
this limit are one-half BPS operators and their superconfor-
mal descendants, dual to supergravity KK modes. Naively,
each single-trace operatorO appearing, e.g., in the s-channel
OPE would contribute infinitely many poles to M at
s ¼ τO þ 2m, m ∈ Zþ, but in fact this sequence of single-
trace poles truncates before it would start overlapping with
the double-trace poles in Eq. (13) [30]. This truncation is
necessary for a consistent OPE interpretation [32].
The same conclusion can be reached by a diagrammatic

argument in supergravity. The Oð1=N2Þ term of Gconn is
given by a (finite) sum of tree-level Witten diagrams: s-, t-,
and u-channel exchange diagrams, in correspondence
with the single-trace operators exchanged in the respective
channel OPE, and additional contact diagrams, arising from
quartic vertices. The Mellin amplitude for an s-channel
exchange Witten diagram takes the form [19]
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MΔ;Jðs; tÞ ¼
X∞
m¼0

QJ;mðtÞ
s − ðΔ − JÞ − 2m

þ PJ−1ðs; tÞ; ð15Þ

whereΔ and J are the dimension and spin of the exchanged
field,QJ;mðtÞ are polynomials in t of degree J andPJ−1ðs; tÞ
is a polynomial in s and t of degree J − 1. For the values of
Δ and J that appear in AdS5 × S5 supergravity, the sum over
m truncates [34], with the same mmax predicted by the
principle that there must be no overlap with double-trace

poles; namely, mmax ¼ minfΔ1þΔ2;Δ3þΔ4g−ðΔ−JÞ
2

.
We see from Eq. (15) that exchange diagrams grow at

most linearly at large s and t, because J ≤ 2 in supergravity.
In Mellin space, a contact diagram is a polynomial in s
and t [15], of degree equal to half the number of spacetime
derivatives in the quartic vertex. The AdS5 effective action
[8] contains quartic vertices with up to four spacetime
derivatives, which would naively give a quadratic asymp-
totic growth for large s and t, but in fact the final answer
is expected to grow at most linearly [35]. Indeed, a
larger asymptotic growth would be inconsistent with the
flat-space space limit [15].
Bootstrap problem.—We are ready to enumerate several

properties of M. First, there are structural algebraic
properties, valid for any N and λ.
1. Bose symmetry.—M is invariant under permutation of

the Mandelstam variables, if the quantum numbers of the
external operators are permuted accordingly. For example,
for equal weights pi ¼ p, this gives the usual crossing
relations

σpMðu; t; 1=σ; τ=σÞ ¼ Mðs; t; ; σ; τÞ;
τpMðt; s; σ=τ; 1=τÞ ¼ Mðs; t; σ; τÞ; ð16Þ

where u was defined in Eq. (14).
2. Superconformal Ward identity.—We need to translate

Eq. (9) into Mellin space. In parallel with Eq. (12), we take
the integral transform of the dynamical H function,

eMðs; t; σ; τÞ ¼
Z

∞

0

dVV−t=2þðminfp1þp4;p2þp3g=2Þ−1

×
Z

∞

0

dUU−s=2þðp3þp4Þ=2−L−1HðU;V; σ; τÞ;

ð17Þ

and then define

fMðs; t; σ; τÞ ¼
eMðs; t; σ; τÞ
~Γp1p2p3p4

; ð18Þ

where ~Γp1p2p3p4
is obtained by replacing u → ~u ¼ u − 4 in

Eq. (13). This shift in u is useful to make the crossing

symmetry properties of fM more transparent. For example,
for equal weights,

σp−2fMð ~u; t; 1=σ; τ=σÞ ¼ fMðs; t; ; σ; τÞ;
τp−2fMðt; s; σ=τ; 1=τÞ ¼ fMðs; t; σ; τÞ: ð19Þ

With this definition of fM, Eq. (9) is equivalent to

Mðs; t; σ; τÞ ¼ R̂∘fMðs; t; σ; τÞ; ð20Þ
where R̂ is given by Eq. (10) with eachUmVn replaced by a
difference operator dUmVn acting as

dUmVn ∘ fMðs; t; σ; τÞ
¼ fMðs − 2m; t − 2n; σ; τÞ
×
�p1 þ p2 − s

2

�
m

�p1 þ p3 − u
2

�
2−m−n

×
�p1 þ p4 − t

2

�
n

�p2 þ p3 − t
2

�
n

×
�p2 þ p4 − u

2

�
2−m−n

�p3 þ p4 − s
2

�
m
;

with ðhÞn ¼ Γ½hþ n�=Γ½h� denoting the Pochhammer sym-
bol. Contrasting Eqs. (9) and (20), it may appear that we
have forgotten the term Gfree. In fact, the Mellin transform
of the free part is “zero” (a sum of delta functions) and can
be consistently ignored. While the direct Mellin transform
Eq. (12) is unambiguous, the inverse Mellin transform from
M back to Gconn requires us to prescribe an integration
contour—one must integrate inside the “fundamental
strips” for s and t where the integrals in Eq. (12) converge.
The correct choice of contour reproduces Gfree automati-
cally. Details will appear in Ref. [33].
Second, we have argued that at leading Oð1=N2Þ order

and for λ → ∞, M becomes a very constrained rational
function.
3. Analytic structure.—It follows from the truncation of

the sum in Eq. (15) and from the spectrum of AdS5 × S5

supergravity that M has a finite number of simple poles in
s, t, u, at the locations

s0 ¼ sM − 2a; s0 ≥ 2;

t0 ¼ tM − 2b; t0 ≥ 2;

u0 ¼ uM − 2c; u0 ≥ 2;

where

sM ¼ minfp1 þ p2; p3 þ p4g − 2; ð21Þ
tM ¼ minfp1 þ p4; p2 þ p3g − 2; ð22Þ
uM ¼ minfp1 þ p3; p2 þ p4g − 2; ð23Þ

and a, b, c are non-negative integers. Furthermore, the
residue at each pole is a polynomial in the otherMandelstam
variable.
4. Asymptotics.—M grows linearly at large values of the

Mandelstam variables:
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Mðβs; βt; σ; τÞ ∼OðβÞ for β → ∞: ð24Þ
Taken together, these conditions define a very con-

strained bootstrap problem.
Our solution.—Some experimentation at low KK levels

leads us to the ansatz

fMðs; t;σ;τÞ

¼
X

iþjþk¼L−2
0≤i;j;k≤L−2

aijkσiτj

ðs− sMþ2kÞðt− tMþ2jÞð ~u−uMþ2iÞ : ð25Þ

This is the most symmetric expression compatible with
Bose symmetry, the scaling Eq. (24), and the expected

pole structure. Imposing that M ¼ R̂∘fM has poles with
polynomial residues fixes the coefficients aijk uniquely, up
to overall normalization:

aijk ¼
�
1þ jp1 − p2 þ p3 − p4j

2

�
−1

i

×

�
1þ jp1 þ p4 − p2 − p3j

2

�
−1

j

×

�
1þ jp1 þ p2 − p3 − p4j

2

�
−1

k

�
L − 2

i j k

�
Cp1p2p3p4

;

ð26Þ
where ðL−2i j kÞ is the trinomial coefficient. The normalization

constantCp1p2p3p4
¼ fðp1; p2; p3; p4Þ=N2 cannot be deter-

mined from our homogeneous consistency conditions [37].
We have checked that our proposal reproduces all the
available supergravity calculations: the equal weights cases
pi ¼ 2 [10], pi ¼ 3 [21], and pi ¼ 4 [22], as well as the
general expression [23,24,36] for next-to-next extremal
correlators (i.e., the cases p1 ¼ nþ k, p2 ¼ n − k,
p3 ¼ p4 ¼ kþ 2) [38]. We have not yet been able to
prove, but find it very plausible, that Eq. (25) is the most
general ansatz compatible with the bootstrap conditions.
Position space method.—The power of maximal super-

symmetry can also be appreciated by an independent
method in position space, which will be fully illustrated
in Ref. [33]. This method mimics the conventional holo-
graphic calculation of correlation functions, writing the
answer as a sum of exchange and contact Witten diagrams,

Asugra ¼ Aexchange þAcontact; ð27Þ
but it eschews knowledge of the precise cubic and quartic
couplings, left as undetermined coefficients. Using the
results of Ref. [39], the exchange diagrams are expressed as
finite sums of contact diagrams (D̄ functions). All in all,
one is led to an ansatz in terms a finite sum of D̄ functions,
depending linearly on a set of coefficients, to be fixed by
imposing the superconformal Ward identity. The task of
obtaining the correct vertices from the effective action and
working out tedious combinatorics is replaced by an easier

linear algebra problem. In practice, one uses the fact that D̄
functions can be uniquely written as

D̄Δ1Δ2Δ3Δ4
¼RΦΦðU;VÞþRV logVþRU logUþR0; ð28Þ

where ΦðU;VÞ ¼ D̄1111 is the scalar box diagram and
RΦ;U;V;0 are rational functions of the cross ratios U and V.
The ansatz for Asugra can be decomposed similarly, with
rational coefficient functions Rsugraðz; z̄; α; ᾱÞ that also
depend on the R-symmetry cross ratios. The superconfor-
mal Ward identity then becomes a set of conditions on the
rational coefficient functions,

Rsugra
Φ ðz; z̄; α; 1=z̄Þ ¼ 0;

Rsugra
V ðz; z̄; α; 1=z̄Þ ¼ 0;

Rsugra
U ðz; z̄; α; 1=z̄Þ ¼ 0; ð29Þ

giving a set of linear equations for the undetermined
coefficients. The uniqueness of the maximally supersym-
metric action guarantees the existence of a unique solution
up to overall rescaling. Finally, the overall normalization is
determined by matching the protected part of the correlator
with free field theory:

Rsugra
0 ðz; z̄; α; 1=z̄Þ ¼ Gfreeðz; z̄; α; 1=z̄Þ: ð30Þ

This method is fully rigorous, relying entirely on the
structure of the supergravity calculation with no additional
assumption. Despite being much simpler than the conven-
tional approach, even this method quickly becomes
unwieldy as the KK level is increased. We have so far
obtained results for the equal weights correlators with
p ¼ 2, 3, 4, 5. The result for p ¼ 5 is new. It agrees both
with our Mellin formula Eq. (25) and with a previous
conjecture by Dolan, Nirschl, and Osborn [40], who
proposed a general answer for arbitrary equal weights,
as a sum of D̄ functions. Unfortunately the complexity of
their expression grows very rapidly with p, making a check
against Eq. (25) very cumbersome for p > 5.
Discussion.—The remarkable simplicity of the general

formula Eq. (25) is a welcome surprise. Like the Parke-
Taylor formula [41] for tree-level maximally helicity violat-
ing (MHV) gluon scattering amplitudes, it encodes in a
succinct expression the sum of an intimidating number of
diagrams. It appears that holographic correlators are much
simpler than previously understood. We believe that they
should be studied following the blueprint of the modern
on-shell approach to perturbative gauge theory amplitudes.
While we have obtained Eq. (25) as the solution of a set
of bootstrap conditions, a more constructive approach based
on on-shell recursion relations (à la Britto-Cachazo-Feng-
Witten [42]?)may also exist, and lend itselfmore easily to the
generalization to higher n-point correlators [43].
An important direction to pursue is the generalization of

our results to include the ’t Hooft coupling dependence. For
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large λ, one could study α0 corrections perturbatively, by
relaxing the asymptotic behavior Eq. (24). It would be
interesting to make contact with the results of Ref. [46].
In the opposite limit of small λ, it would be worthwhile
to explore whether a pattern similar to Eq. (25) can be
recognized in the Mellin transformation of perturbative
correlators [47]. On a more practical note, Eq. (25)
implicitly contains a large amount of CFT data, such as
the order Oð1=N2Þ anomalous dimensions of arbitrary
double-trace operators in the strong coupling limit, which
are proportional to the residues of the double poles in M.
These are useful data for comparison with the super-
conformal bootstrap [49,50], and it will be nice to extract
them explicitly.
Finally, a direct generalization of the approach pursued

here gives structurally similar results for holographic
correlators in AdS7 × S4, as we shall report elsewhere.
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