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An exact mapping is established between the c ≥ 25 Liouville field theory (LFT) and the Gibbs measure
statistics of a thermal particle in a 2D Gaussian free field plus a logarithmic confining potential. The
probability distribution of the position of the minimum of the energy landscape is obtained exactly by
combining the conformal bootstrap and one-step replica symmetry-breaking methods. Operator product
expansions in the LFT allow us to unveil novel universal behaviors of the log-correlated random energy
class. High-precision numerical tests are given.
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The problem of a thermal particle embedded in a log-
correlated random potential (log-REMs) plays a key role in
many physical systems ranging from2D localization [1–4] to
spin glasses [5–7], the branching process [8–12], and random
matrices [13–18]. As a result of the competition between the
deep minima of the log-potential and the entropic spreading
of the particle, the system undergoes a second-order freezing
transition between a high-temperature delocalized phase and
a low-temperature glassy phasewhere the particle is frozen in
few minima [5,8]. In the simplest realization of such
disordered systems, the random potential is sampled from
a 2D Gaussian free field (2D GFF). This allowed for exact
predictions of free energy and Gibbs measure statistics [19],
in cases where the particle is restricted to simple 1D curves
drawn on the 2D GFF potential [20–26]. Unfortunately, no
results are known in 2D, despite powerful tools of integra-
bility and the conformal field theory, e.g., the Dotsenko-
Fateev integrals [27] generalizing the Selberg integrals used
for 1D curves.
One of the most studied 2D conformal field theories is

the Liouville field theory (LFT) that describes 2D quan-
tum gravity [28–30] and plays an important role in the
holography correspondence with (2þ 1)-D gravity; see,
e.g., [31,32], and references therein. Although the LFT is
an interacting theory, it has strong connections to the 2D
GFF. Indeed, this is a general feature of conformal field
theories, as it is manifest, for instance, in the Coulomb gas
approach to critical statistical models [27,33]. This view-
point underlies also recent mathematical developments
[34–37].
Ideas of relating the Gibbs measure statistics in the 2D

GFF and the c ≥ 25 LFT go back to Refs. [1,5] (see [38]
for earlier work on LFT–disordered-system connections).
Links were found between LFT features (scaling
dimension, c ¼ 25 barrier) and disordered-system phenom-
ena (multifractal exponents and freezing, respectively).

However, as pointed out in Ref. [5], these ideas were
not fully exploited, because the asymptotic behavior of the
LFT field is subtle to implement in the statistical model
under consideration. This Letter reopens the problem using
more powerful methods, based on recent progresses in the
LFT and in understanding of log-REM freezing transitions.
Adding a logarithmic confining potential to the 2D GFF
allows us to establish an exact correspondence between the
disorder-averaged Gibbs measure in 2D and the LFT four-
point function. When carried through the freezing transi-
tion, this result leads to predictions for the probability
distribution of the positions of the extrema in 2D and also
extends to curved surfaces and higher-order Gibbs measure
correlations. More generally, we use the short-distance
behavior of LFT correlators to give predictions that go
beyond the previous setup and apply to all log-REMs. This
is possible thanks to the well-known dimension independ-
ence (universality) of many properties of log-REMs [5,39]
and mappings between them. In particular, our results
extend to an arbitrary temperature a recent work of Derrida
and Mottishaw [40] on the directed polymer on a Cayley
tree. The above outline is illustrated in Fig. 1.

FIG. 1. The map of connections considered in this work.
Building on known relations between the LFT and 2D GFF,
we establish exact mappings between LFTand log-REMs defined
by the 2D GFF [Eqs. (9) and (13)]. Then we exploit the
universality of the log-REM class to extend Liouville OPE
predictions to all log-REMs, e.g., Eq. (19).
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Setup.—Our central object is the normalized Gibbs
measure of a particle on the plane:

pβðzÞ¼def
1

Z
e−β½ϕðzÞþUðzÞ�; z ∈ C; ð1Þ

Z¼def
Z
C
e−β½ϕðzÞþUðzÞ�d2z: ð2Þ

Here, Z is the canonical partition function at temperature
1=β,UðzÞ is a confining potential defined as the sum of two
logarithms:

UðzÞ¼def4a1 ln jzj þ 4a2 ln jz − 1j; a1; a2 > 0; ð3Þ

and ϕðzÞ is the 2D GFF. The latter is well defined only in a
finite geometry of size R with a lattice spacing ϵ. In the
regime ϵ ≪ jz − wj ≪ R, the covariance is

ϕðzÞϕðwÞ ¼ 4 lnðR=jz − wjÞ; ð4Þ

supplemented by ϕðzÞ2 ¼ 4 lnðR=ϵÞ and ϕðzÞ ¼ 0.
Figure 2 shows a simulation of ϕþ U. To prepare for
the field theory connection below, we now discuss the
ϵ → 0, R → ∞, thermodynamic limit of the model. For
later convenience, the zero mode, immaterial for the Gibbs
measure, is adjusted to vanish, i.e.,

R
ϕðzÞd2z ¼ 0 for each

realization.
If one sets UðzÞ ¼ 0, the model belongs to the class of

standard log-REMs, for which the mean free energy is
universal [modulo an Oð1Þ correction] and displays a
freezing transition at β ¼ 1 [5,8,19]:

F ¼ −Q lnM þ η ln lnM þOð1Þ; M ¼ ðR=ϵÞ2; ð5Þ

Q ¼ bþ b−1; b ¼ minð1; βÞ: ð6Þ

Here, η ln lnM is the universal subleading correction
[5,8,41]. In the β < 1 phase, it is absent (η ¼ 0). At the
critical point β ¼ 1, the subleading term appears with
η ¼ 1

2
. In the glassy phase β > 1, the leading term

−2 lnM displays freezing, and the correction coefficient
becomes η ¼ 3

2
. Note that the leading behaviors are shared

by the uncorrelated REM [42], the first signature of the
log-correlated universality being the subleading term
3
2
ln lnM [43,44].
When UðzÞ is turned on, Eq. (5) may not persist. Indeed,

when a log-singularity of UðzÞ (say, at z ¼ 0) is too deep,
there can be a binding transition [5,20] dominating the free
energy [see Fig. 2(b), middle]. This happens when the
energy at its bottom is 4a1 ln ϵ ≪ F as ϵ → 0, i.e., when
a1 > Q=2. This work excludes such bound phases, in
which the Gibbs measure is a trivial δ, by requiring

a1; a2 < Q=2: ð7Þ

Moreover, the potential must also confine the particle at
z ∼Oð1Þ in the R → þ∞ limit; otherwise, pβ would be
non-normalizable in that limit [see Fig. 2(b), top]. Thus, we
require F þUðRÞ → þ∞ as R → þ∞, or

a1 þ a2 > Q=2: ð8Þ

When (7) and (8) are satisfied, pβðzÞ has a well-defined
nontrivial limit (in law) as ϵ → 0, R → ∞ [see Fig. 2(b),
bottom]. Thus, adding a confining potential is sufficient to
make the position problem well posed. By contrast, the free
energy distribution is dominated by long-wavelength fluc-
tuations of ϕ and suffers from an R → ∞ divergence,
whose proper subtraction is an open question (see, how-
ever, discussions in 1D [20,21,23]).
Connection to LFT in β < 1 phase.—Let us first

introduce some notations. Let hQn
i¼1 VaiðziÞib be the

Euclidean n-point correlation function of the LFT defined
on the complex plane plus a point at ∞, C∪f∞g, and with
central charge c ¼ 1þ 6Q2, Q ¼ bþ b−1. The field VaðzÞ
is a primary field with scaling dimension Δa ¼ aðQ − aÞ
[29,45]. We first demonstrate the connection between the
Gibbs measure statistics and the LFT on the simplest
example. We claim

pβðzÞ ∝
β<1 hVa1ð0ÞVa2ð1ÞVbðzÞVa3ð∞Þib; ð9Þ

where a3 ¼ Q − a1 − a2 [51].
In order to show the above identity, we will use the LFT

functional integral representation. This is defined, on any
closed surface Σ, from the action Sb:

(a) (b)

FIG. 2. (a) Color plot of a 2D GFF (4) sample plus the log
confining potential UðzÞ (3) with a1;2 ¼ 0.8, 0.6. The two
singularities z ¼ 0, 1 are indicated by dots. The domain has
lattice spacing ϵ ¼ 2−5 and size R ¼ 8, with a periodic boundary
condition. (b) Top: When Eq. (8) is violated (a1;2 ¼ 0.1, Q ¼ 2),
the particle is not confined, and the R → ∞ limit is ill defined.
Middle: When Eq. (7) is violated (a1;2 ¼ 2,Q ¼ 2), the particle is
trapped, and the Gibbs measure becomes a δ peak as ϵ → 0.
Bottom: When both Eqs. (7) and (8) are met (a1;2 ¼ 0.8, 0.6,
Q ¼ 2, the extent of the central region is stable as R → ∞, ϵ → 0.

PRL 118, 090601 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 MARCH 2017

090601-2



Sb ¼
Z
Σ

�
1

16π
ð∇φÞ2 − 1

8π
QR̂φþ μe−bφ

�
dA; ð10Þ

where μ is the coupling constant, R̂ is the Ricci curvature,
and dA is the surface element. Note that, in our case, the
surface Σ ¼ C∪f∞g has the topology of a sphere with the
curvature concentrated at ∞ and vanishing elsewhere:
R̂ðzÞ ¼ 8πδ2ðz −∞Þ, dA ¼ d2z. In this representation,
the primary fields are exponential fields, VaðwÞ ⇝
e−aφðwÞ, also called vertex operators. The four-point corre-
lation function in (9) can be written as

K4¼def
Z

Dφe−Sb−bφðzÞ−a1φð0Þ−a2φð1Þ−a3φð∞Þ; ð11Þ

where we noted K4¼defhVa1ð0ÞVa2ð1ÞVbðzÞVa3ð∞Þib for
better readability. To derive (9), we recall that the
Liouville field is decomposed into a zero mode and a
fluctuating part, φðzÞ ¼ φ0 þ ~φðzÞ, where φ0 is the zero
mode [52] (see [36] for recent rigorous work in a related
setting). Accordingly, the functional integral is written asR
Dφ ¼ R

R dφ0

R
D ~φ. Once we performed the integration

over φ0, the one over ~φ can be written as an expectation
over the 2D GFF without a zero mode, i.e., over ϕ defined
in Eq. (4); that is, for any observable O, we haveR
D ~φe−

R
ð1=16πÞð∇ ~φÞ2d2zO½ ~φ� ¼ O½ϕ�. With these consider-

ations, one can obtain

μbK4 ¼ e−a1ϕð0Þ−a2ϕð1Þþða1þa2Þϕð∞Þ−bϕðzÞ=Z0; ð12Þ

where Z0 ¼
R
C e

−bϕðzÞd2z. The choice of a3 in (9) is crucial
for the apparition of Z−1

0 . Then, a complete-the-square trick
allows us to identify the average in (12) to pβðzÞ, leading to
(9) (see [45] for details).
The above steps generalize easily to the multipoint

correlations of powers of the Gibbs measure pqi
β ðziÞ ¼

½pβðziÞ�qi , qi ≥ 0, with UðzÞ ¼ P
k
j¼1 4aj ln jz − wjj such

that ∀ aj < Q=2 and akþ1¼defQ −
P

k
j¼1 aj < Q=2 [com-

pare to (7) and (8)]. The result is stated as

Yn
i¼1

pqi
β ðziÞ ∝

β<1
�Ykþ1

j¼1

VajðwjÞ
Yn
i¼1

VβqiðziÞ
�

b

; ð13Þ

where wkþ1 ¼ ∞ and ∀ qi < Q=ð2βÞ [45]. Moreover, (13)
holds, in general closed surfaces [45]. While mapping
Gibbs measure correlations onto LFT correlations on a
sphere requires a potential with ≥ 3 singular points [e.g., 0,
1, and∞ for (3)], on a torus the potential is unnecessary. In
general, the sum of the charges must be equal to Qχ=2,
where χ is the Euler characteristics of the surface (χ ¼ 2 for
the sphere and 0 the torus) [45].

We now use known properties of the LFT to obtain new
results for our log-REM model and beyond.
β > 1 phase.—The four-point function in (9) is invariant

under the transform b → 1=b [53]. Hence, from the
freezing-duality conjecture [20,22], we expect that pβ>1 ¼
p1 freezes, so the prediction (9) still holds thanks to the
notation b ¼ minð1; βÞ; this can be also shown by replica
symmetry breaking (RSB) [21,54]. Taking the β → ∞ limit
gives the position distribution of the minimum of
ϕðzÞ þUðzÞ. Note that the freezing of pβ does not imply
that of pβ, as revealed by its multipoint correlations.
Indeed, pβ>1 develops δ peaks, which are absent when
β < 1 and which give rise to a δ contact singularity in
two-point correlations of pβ>1. For example, an RSB
calculation as in Refs. [21,54] gives

pβðz1Þpβðz2Þ¼ð1−TÞδ1;2p1ðz1ÞþTp1ðz1Þp1ðz2Þ; ð14Þ

where δ1;2 ¼ δðz1 − z2Þ and T ¼ 1=β < 1. We will further
apply and discuss this result below; see Eq. (19).
At β → ∞, the positions of the deepest minima of the 2D

GFF can be also studied by RSB [54] (see also some
rigorous results [55]). That allows us to show, for instance,
that the joint probability distribution of the first and second
minima positions (ξ1;2) is (see [45])

Pðξ1; ξ2Þ ¼ c0δðξ1 − ξ2Þp1ðξ1Þ þ ð1 − c0Þp1ðξ1Þp1ðξ2Þ
ð15Þ

and thus also relates to the LFT using (13). Here c0 ¼ 1 − ḡ
is the probability that the two lowest minima belong to the
same “cluster,” and g is the energy gap between them,
which depends on model-specific details at the ∼ϵ scale.
Numerical test.—The LFT four-point functions are

exactly calculated by the conformal bootstrap [45,53], imple-
mented by the code base [56], and extended to take into
account the discrete terms (they have important conse-
quences; see below). The lhs of (9) is measured on extensive
simulations of the discrete 2D GFF, as shown in Fig. 2. The
results validate unambiguously the predictions; see Fig. 3.

(a) (b)

FIG. 3. Test of (9) on the segment z ∈ ½0; 1�. (a) High-T regime
(β ¼ 0.4). (b) Minimum position distribution versus the LFTwith
b ¼ 1. Numerical parameters: R ¼ 8, ϵ ¼ 2−9, and 5 × 106

independent samples.
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Now that the advocated relation has been confirmed in a
particular setting, the next goal is to extract more universal
physical consequences from the LFT.
Liouville OPE.—As can be seen in Fig. 3, pβðzÞ diverges

as z comes near a log singularity of the potential UðzÞ, say,
as z → 0whereUðzÞ ≈ 4a1 ln jzj. This asymptotic behavior
depends only on β and a1 and can be obtained from an
operator product expansion (OPE) Vαð0ÞVα0 ðzÞ [57]. Such
OPEs have been obtained by conformal bootstrap [45] and
read as follows:

hVað0ÞVa0 ðzÞ…ib∼z
~0

8>><
>>:
jzj−2δ0 ; a00¼defaþa0 <Q

2
;

jzj−2δ0 ln−ð1=2Þj1=zj; a00 ¼ Q
2
;

jzj−2δ1 ln−ð3=2Þj1=zj; a00 >Q
2
;

δ0 ¼ 2aa0; δ1 ¼ΔaþΔa0 −ΔQ=2; Δa ¼ aðQ−aÞ:
ð16Þ

These asymptotic behaviors hold for generic LFT correla-
tions, as long as the distance jzj is much smaller than that to
the other operators (as well as R). Note, moreover, that field
theory predictions break down when jzj ∼ ϵ. To obtain the
divergence of pβðz → 0Þ shown in Fig. 3 from (9), we must
set a ¼ a1 and a0 ¼ b in (16).
The abrupt behavior change as the parameters cross the

line aþ a0 ¼ Q=2 comes from a peculiar feature of
the LFT and corresponds to the presence or absence of the
discrete terms [30,58–60] (see also [57], Ex. 3.3, and [45]).
To discuss the physical consequences of this feature, we
consider two independent thermal particles in one realization
and the disorder-averaged joint position distribution
pβðwÞpβðzþ wÞ. If w is fixed far from singularities, and
z → 0, the asymptotic dependence on z is given by Eq. (16)
(with a ¼ a0 ¼ b), independently of the other details. In
particular, combining with (15) gives the following asymp-
totics of the first-second minima position distribution:

Pðξ1; ξ2Þ ∼ jξ1 − ξ2j−2ln−ð3=2Þj1=ðξ1 − ξ2Þj; ð17Þ

which holds for 1 ≫ jξ1 − ξ2j ≫ ϵ [while the δ in (15) takes
over as jzj ∼ ϵ].
Beyond 2D.—The robustness of the above results

suggests their generalization beyond 2D GFF models to
general log-REMs, such as the directed polymer on
disordered Cayley tree model [8]. This is the best studied
log-REM, due to its relevance in classical (e.g., Kardar-
Parisi-Zhang class [61]) and quantum (e.g., Anderson
transition [62]) disordered systems. It is defined on a
Cayley tree (see Fig. 3 of [45]) of depth t and branching
number κ (κ ¼ e for branching Brownian motion). Each
edge has an independent Gaussian random energy of zero
mean and variance 2 ln κ (so that freezing occurs at β ¼ 1).
A directed polymer (DP) is a simple path from the root to

some leaf, and its energy is the sum of the edge energies.
Then, the energy of all the DPs ϕ1;…;ϕM, M ¼ κt are
centered Gaussian with covariance

ϕiϕj ¼ 2q̂ij ln κ; ð18Þ

where q̂ij ∈ ½0; t� is the common length of i and j. An
interesting question is the distribution Pðq̂Þ of the common
length of two independent thermal DPs drawn from a single
Gibbs measure pi ∝ e−βϕi for t → ∞. This quantity is
different from the more studied distribution of the overlap
q ¼ q̂=t for t → ∞ [63]. Our results correspond to the
leading finite-t correction of the latter near q ¼ 0.
To calculate Pðq̂Þ, we compare positions (distance) in

2D to DPs (common length) on the tree, by matching
the respective covariances (4) and (18). This gives
jzj ¼ r ¼ κ−q̂=2 ∈ ½κ−ðt=2Þ ¼ ϵ; 1 ¼ R�, leading to the trans-
formation Pðq̂Þdq̂ ¼ pβðwÞpβðwþ rÞ2πrdr. Then apply-
ing (16) leads to [see [45], Eq. (35)]

Pðq̂Þ ∼

8>>>>><
>>>>>:

κð2β2−1Þq̂; β < 3−ð1=2Þ;

κ−q̂=3q̂−ð1=2Þ; β ¼ 3−ð1=2Þ;

κ−ðβ−β−1Þ2q̂=4q̂−ð3=2Þ; β ∈ ð3−ð1=2Þ; 1Þ
q̂−ð3=2Þβ−1; β ≥ 1; q̂ ≪ t:

ð19Þ

For the β ≥ 1 case we used also the RSB result (14), which
can be interpreted as follows: With probability T ¼ 1=β,
the common length q̂ remains finite, and the Liouville OPE
applies, while with probability 1 − T, q̂ ∼OðtÞ. In the 2D
context, the latter case corresponds to two particles frozen
at a distance ∼ϵ. The field theory results are valid only in
the continuum regime r ≫ ϵ, which corresponds to q̂ ≪ t
for the DP model. For this reason, our β ≥ 1 result matches
the exact solution of Ref. [40] when q ¼ q̂=t ≪ 1 and loses
validity at q → 1 (q̂ → t).
The results for the β < 1 phase are new and display, in

the high-T phase, log-corrections typical of the freezing
transition. As will be reported in upcoming work, they are
universal signatures of the termination point transition
(called “prefreezing” in [64]) in log-REMs. This transition
manifests itself in the annealed average of inverse partition

ratio Pq¼def
P

M
i¼1ðe−βϕi=ZÞq, q > 0. Indeed, one can show

− lnPq ∼β<1

8>><
>>:

τðqÞ lnM qβ < Q
2
;

τðqÞ lnM þ 1
2
ln lnM qβ ¼ Q

2
;

τðqÞ lnM þ 3
2
ln lnM qβ > Q

2
;

ð20Þ

where τðqÞ ¼ Δminðqβ;Q=2Þ − 1 [see (16)]. Note that, for the
uncorrelated REM [64], we would have the same τðqÞ but
1
2
ln lnM correction when qβ > Q=2 [65]. In the LFT, the
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latter phase is where pq
β can no longer be represented by

Vqβ as it would violate a Seiberg bound [(13) and [45]].
Conclusion.—We related the c ≥ 25 LFT to the Gibbs

measure of the 2D GFF plus a log potential and found
indications that the LFT may describe universal features of
general log-REMs. We mention two exciting perspectives.
The first is extending the mapping to log-REMs with
imaginary temperature (b → ib), where relations to c ≤ 1
conformal field theories, β-random matrix ensembles, and
2D log-gases are natural to expect. The other concerns the
glassy phase β > 1, in which the LFT must be supple-
mented by an RSB or freezing-duality conjecture in order
to make correct predictions. However, the termination point
transition predicted by the LFT alone resembles strikingly
the freezing transition. This points to the intriguing ques-
tion: Does the glassy phase have a field theory description?
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