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Motivated by their necessity for most fault-tolerant quantum computation schemes, we formulate a
resource theory for magic states. First, we show that robustness of magic is a well-behaved magic
monotone that operationally quantifies the classical simulation overhead for a Gottesman-Knill-type
scheme using ancillary magic states. Our framework subsequently finds immediate application in the task
of synthesizing non-Clifford gates using magic states. When magic states are interspersed with Clifford
gates, Pauli measurements, and stabilizer ancillas—the most general synthesis scenario—then the class of
synthesizable unitaries is hard to characterize. Our techniques can place nontrivial lower bounds on the
number of magic states required for implementing a given target unitary. Guided by these results, we have
found new and optimal examples of such synthesis.
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Quantum resource theories attempt to capture what is
quintessentially quantum in a piece of technology. For
example, entanglement is the relevant resource for quantum
cryptography and communication. The resource framework
for entanglement finds practical application in bounding the
efficiency of entanglement distillation protocols. An abun-
dance of other resource theories have been related to
various aspects of quantum theory [1–8]. Once a quantum
computer is made fault-tolerant, some computational oper-
ations become relatively easy, and some more difficult,
leading to a natural resource picture called the magic state
model [9,10] (although, alternative routes to fault-tolerant
universality exist [11]). Preparation of stabilizer states and
implementation of Clifford unitaries and Pauli measure-
ments constitute free resources. Difficult operations include
preparation of magic states, a supply of which is necessary
in order to promote the easier operations to a universal gate
set. With only free resources, the computation can be
efficiently classically simulated, whereas with a liberal
supply of pure magic states, universal quantum computa-
tion is unlocked. For qudit (d-level) quantum computers
with odd d, a resource theory of magic (or equivalently
contextuality with respect to stabilizer measurements
[12,13]) has been developed [7,14,15]. This relies on a
well-behaved discrete Wigner function [16], which, in turn,
relies on quirks of odd dimensional Hilbert space. Here, we
address the most practically important case by quantifying
the magic for multiqubit systems, relating this resource
measure to simulation complexity and applying the re-
source theory to the practical problem of gate synthesis.
The canonical magic state is jHi ¼ ðj0i þ eiπ=4j1iÞ= ffiffiffi

2
p

,
which enables application of a single-qubit unitary T ¼
diagð1; eiπ=4Þ [9,10]. A circuit composed of elements from
the Cliffordþ T gate set acting on the standard computa-
tional basis input suffices for universal quantum

computation. Such a circuit can be classically simulated,
but in a time that scales exponentially in the number of
T gates [17]. Faster simulation algorithms were recently
discovered that relate the simulation complexity to the
stabilizer rank [18–20], a measure of magic for pure states.
Such techniques do not naturally adapt to mixed magic
states, and stabilizer rank is qualitatively very different to
the magic measure we establish here. For quantum com-
putations using qudits with odd dimension, the discrete
Wigner function provides a quasiprobability distribution,
and Pashayan et al. [21] showed that the negativity
quantifies the simulation complexity. Here, we provide a
general simulation scheme, which can be naturally applied
to mixed-state qubit quantum computations using any kind
of ancillary magic state (e.g., a multiqubit magic state
enabling a Toffoli gate). Furthermore, for many problems,
our approach is competitive with comparable schemes
based on stabilizer rank [18,19].
Because of the high price assigned to jHi states and,

hence, T gates, it behooves us to find Cliffordþ T circuit
implementations of quantum algorithms that are parsimo-
nious in their use of T gates. The topic of circuit synthesis
has made tremendous progress in recent years [22–30],
compared with Solovay-Kitaev type constructions that
were for a long time the standard benchmark.
Developments include identifying special algebraic forms
for all gates that can be unitarily synthesized over the
Cliffordþ T gate set [24] or over the smaller CNOTþ T
gate set [22,23]. However, circuit synthesis need not be a
purely unitary process and, more generally, may be aided
by ancillary stabilizer states, measurements, and classical
feedforward. There are hints that general synthesis can be
significantly more powerful [26,27,30,31], though the
paradigm is not well understood. Our resource framework
helps with this problem by establishing nontrivial lower
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bounds on the number of jHi states, or equivalently T
gates, required for the general synthesis scenario. This
allows us to identify several circuits as optimal. Such
resource-theoretic tools work for any kind of state, not just
jHi, but they are particularly well motivated for magic
states from the third level of the Clifford hierarchy, e.g.,
Toffoli resource states. We note how general synthesis has a
curious relationship to Clifford equivalence of magic states.
From this vantage point, we discover several new examples
of general synthesis protocols with resource savings over
previous unitary synthesis methods.
The Supplemental Material [32] (text, which includes

Refs. [33–37], and files) contain numerous additional
computations. Results include identifying the most robust
states, most robust gates, and classification of all three and
four qubit diagonal gates from the third level of the Clifford
hierarchy. Intriguingly, one maximally robust state is the
Hoggar [38] fiducial state.
Robustness of Magic.—Vidal and Tarrach [8] showed

that the amount of separable noise that makes an entangled
state become separable is an entanglementmonotone, which
they called robustness. The basic principle can be adapted
for use in other resource theories with a set of free states.
Denoting Sn ¼ fσig as the set of pure n-qubit stabilizer
states, we define the robustness of magic (ROM) as

ðROMÞ RðρÞ ¼ min
x

�X
i

jxij; ρ ¼
X
i

xiσi

�
: ð1Þ

Decompositions of the form
P

ixiσi are called stabilizer
pseudomixtures.We have

P
ixi ¼ 1, but ximay be negative,

and so they provide a quasiprobability distribution. The
optimization in (1) can be rewritten in terms of a linear
system as

RðρÞ ¼ min ∥x∥1 subject to Ax ¼ b; ð2Þ

where ∥x∥1 ¼
P

ijxij, bi ¼ TrðPiρÞ and Aj;i ¼ TrðPjσiÞ
wherePj is the jth Pauli operator. For example, consider the

single-qubit magic state jHi ¼ ðj0i þ eiπ=4j1iÞ= ffiffiffi
2

p
, then in

the Pauli operator basis

A ¼

h1i
hXi
hYi
hZi

0
BBB@

1 1 1 1 1 1

1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1

1
CCCA; b ¼

0
BBBBB@

1

1ffiffi
2

p

1ffiffi
2

p

0

1
CCCCCA
;

and the solution of (2) is x ¼ ð ffiffiffi
2

p
; 0; 1; 1 −

ffiffiffi
2

p
; 0; 0Þ=2

implying RðjHiÞ ¼ ffiffiffi
2

p
. There are a number of freely

available solvers for linear programs [39,40], which are
efficient in the size of A. From our formulation of the
problem, it is clear that minAx¼b∥x∥1 is feasible and
bounded. Consequently, strong duality holds, i.e.,

min
Ax¼b

∥x∥1 ¼ max
∥ATy∥∞≤1

− bTy; ð3Þ

and the aforementioned solvers can provide a certificate y
of optimality [41]. Despite the theoretical efficiency of
the linear programing problem, the number of stabilizer
states in Pn scales superexponentially with n, so that
jSnj ¼ 2n

Q
n
j¼1ð2j þ 1Þ [16]. Practically, we are limited

to 1 ≤ n ≤ 5 qubits. We have made available the corre-
sponding A matrices in the Supplemental Material [32].
Robustness of magic possesses all the desirable qualities

of a resource theoretic measure (see Supplemental Material
[32] for proofs of the following). For a mixed stabilizer
state, we find xi > 0 entailing

P
ijxij ¼

P
ixi ¼ 1. For a

nonstabilizer state, at least one xi is negative, and then,
ROM must exceed unity. Therefore, ROM is faithful.
Crucially, ROM is nonincreasing under stabilizer opera-
tions, the free set of operations in the resource theory.
Finally, ROM is submultiplicative,

Rðρ1 ⊗ ρ2Þ ≤ Rðρ1ÞRðρ2Þ; ð4Þ

which follows by using the minimal stabilizer pseudomix-
tures for ρ1 and ρ2 to construct a not-necessarily-minimal
stabilizer pseudomixture for ρ1 ⊗ ρ2. Useful lower bounds
on Rðρ1 ⊗ ρ2Þ can also be obtained (see Supplemental
Material [32]).
Resource theoretic frameworks are commonplace in

quantum information theory but do not always directly
lend themselves to an operational meaningful interpretation
or to useful applications in solving relevant problems. In
the next section, we show how ROM quantifies the
exponential simulation overhead for a version of the
Gottesman-Knill protocol where nonstabilizer ancillas ρ
can be added to an, otherwise, stabilizer circuit. The
subsequent section discusses ROM’s application to the
task of implementing non-Clifford operations in an eco-
nomical way.
Robustness quantifies classical simulation overhead.—

The Gottesman-Knill (GK) theorem shows that, for any
stabilizer circuit written as a superoperator E and pure
stabilizer state σi, we can efficiently sample from the
outcome of a Pauli measurement on EðσiÞ. By collecting
many samples, we can estimate the expectation value to
any desired accuracy. If the input state is a probabilistic
ensemble of stabilizer states, the Gottesman-Knill theorem
still holds provided we can efficiently sample from the
ensemble. A Cliffordþ T circuit suffering very heavy
noise can be simulated in this way [42–44]. Here, we
provide a simulation algorithm for estimating an expect-
ation value Pρ ≔ tr½PEðρÞ� where E is a stabilizer oper-
ation. The simulation time cost scales with

P
ijxij ≥ RðρÞ

where xi are the quasiprobabilities used (which may be
suboptimal). First, as in [21], we use the quasiprobability
distribution xi to form the probability distribution
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pi ¼ jxij=
P

ijxij. We sample an i value from this proba-
bility distribution and use GK to obtain an eigenvalue
m ¼ �1 for the Pauli measurement on EðσiÞ. Our simu-
lation outputs not m, but M ¼ signðxiÞm

P
ijxij where

signðxiÞ ¼ 1 for xi > 0 and signðxiÞ ¼ −1, otherwise.
Notice that each run outputs �P

ijxij and not �1, which
leads to a larger variance of our random variable. We repeat
this sampling processmany times and find themeanvalue of
M, which gives an unbiased estimator of Pρ. The Hoeffding
inequalities show that, for random variables bounded in the
interval ½−Pijxij;þ

P
ijxij�, N samples will estimate the

mean to within δ of the actual mean with probability
exceeding 1 − ϵ where ϵ ¼ 2 exp½−Nδ2=2ðPijxijÞ2�. In
other words, the desired accuracy is guaranteed by using

N ¼ 2

δ2

�X
i

jxij
�

2

ln

�
2

ϵ

�
ð5Þ

samples. Using an optimal stabilizer pseudomixture, the
number of samples scales quadratically in the robustness,
though the robustness typically scales exponentially in the
number of magic states. For each of these samples, the GK
scheme requires a polynomial amount of time, provided we
know how to efficiently sample from the quasiprobability
distribution.
Nonstabilizer circuits.—For any quantum circuit, we can

find an equivalent gadgetized version [9,18,19] over the
Clifford plus T gate set; all uses of T are replaced with the
standard state injection circuit whereby a jHi state is
entangled with a data qubit and subsequently measured
out (see Fig. 1 for an example). The T gadget is just one
example from an infinitely large family of similar gadgets.
All diagonal gates from the third level of the Clifford
hierarchy—the set of gates that map Pauli operators to
Clifford gates under conjugation—are also suitable for
gadgetization. These gates are sufficient for promoting
Clifford gates to universality and have the added property
that access to the state jUi ¼ Ujþi⊗k allows for deter-
ministic implementation of the gate U [45,46], as depicted
in Fig. 1. This family includes important multiqubit gates
such as the control-control-Z (CCZ), which is the Clifford
equivalent to the Toffoli, and control-S (CS) where S ¼ T2.
Therefore, a quantum circuit C1U1C2U2…UNCNþ1 where
Ci is the Clifford equivalent to a stabilizer circuit consum-
ing the resource jUi where U ≔⊗ Uj. We remark that
diagonal, third-level gates are exactly synthesizable from
CNOT and T gates [22,23,47,48].
Large resource states.—For large resource states, the

exact robustness may be difficult to determine. However,
instead of using the optimal robustness, we use stabilizer
pseudomixtures built up from constant sized blocks of
qubits, here, limited to five qubits per block. For instance,
given t ¼ bm copies of the jHi state, we break it into b
blocks of m qubits ðjHi⊗mÞ⊗b and work with a pseudo-
mixture whose sample complexity scales as

P
ijxij ¼

RðjHi⊗mÞb ¼ ½RðjHi⊗mÞ1=m�t.

Numerical results.—We performed substantial numerical
investigations up to five-qubit systems, for which there are
over two million stabilizer states and over one thousand
Pauli operators. For ascending m ≤ 5, we calculated
RðjH⊗miÞ1=m as f1.414; 1.322; 1.304; 1.301; 1.298g. The
decrease with m shows a strongly submultiplicative
behavior and reduces simulation overheads (though ana-
lytic lower bounds derived in the Supplemental Material
[32] show going to higher m cannot reduce this value
below 1.207). Specifically,RðjH⊗5iÞ2t=5≈1.2982t¼1.685t

characterizes the complexity of our Clifford plus t T gate
simulation. This gives exponential improvement over the
method used in [19] with complexity scaling as 1.9185t. A
more efficient use of the stabilizer Schmidt decomposition
was subsequently established in [18], leading to complexity
scaling as 1.385t, although the restriction to pure states, as
in [19], also holds here. Even better scaling with t can be
obtained by using approximate states [18], but at the
price of δ−5 overhead in the precision δ. A quantum
computation using z CCZ gates, can be implemented using
4z T gates [31], implying our simulation complexity scales
as 8.067z. However, as discussed earlier, we can use jCCZi
resource states. We found RðjCCZiÞ ¼ 2.555, and so
z CCZs can be simulated with an overhead dominated
by RðjCCZiÞ2z ¼ 6.531z. This gives exponential improve-
ment over using the four-T-gate gadgetization. Alternative
gadgetizations using jUi ¼ Ujþi with third-level diagonal
U follow naturally, and the simulation overhead is given
by RðjUiÞ, see Supplemental Material [32] for many
possible examples.
Lower bounds on gate synthesis.—Beyond classical

simulation, robustness can help us investigate gate synthe-
sis. Above, we noted that fourT gates can exactly synthesize
a CCZ gate. How can we be sure that a more complicated
or clever scheme does not use even fewerT gates, not just for
CCZ gates, but more generally? This is an important instance

(a) (b)

(c)

FIG. 1. (a) Half-teleportation gadget for implementing diagonal
U in the third level of the Clifford hierarchy. The circuit uses a
resource state jUi ¼ Ujþi⊗n. (b) Exact synthesis of CS gate
using T and CNOT gates. (c) The CS circuit as a gadgetized circuit
using three jHi magic states. Our techniques show this synthesis
is provably optimal.
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where our resource theory of magic applies; a potential
resource state jUi ¼ Ujþi for a non-Clifford unitary U
cannot be made using t T gates ifRðjUiÞ > RðjH⊗tiÞ. The
resource state jCCZi, Clifford equivalent to a Toffoli
resource, has RðjCCZiÞ ¼ 2.555 implying

RðjH⊗3iÞ < RðjCCZiÞ < RðjH⊗4iÞ: ð6Þ
Therefore, we establish that the four T gate synthesis of
CCZ is optimal. Furthermore, the standard decomposition
of CS into 3T gates (see Fig. 1) is provably optimal since
RðjH⊗2iÞ < RðjCSiÞ < RðjH⊗3iÞ. The numerical results
in the Supplemental Material [32] allow for the inference of
optimality for many more unitaries.
Improved gate synthesis.— Circuit synthesis can be

purely unitary over the Cliffordþ T gate set or, more
generally, can make use of stabilizer ancillas and measure-
ment, thereby using even fewer T gates. The scale of the
potential savings is exemplified by the four T gate realiza-
tion of CCZ [31], which is assisted by ancillas and meas-
urement. Purely unitary synthesis of CCZ over Cliffordþ T
is known to need at least seven T gates [24]. We shed new
light on this phenomena by showing that it emerges from
Clifford equivalence ofmagic states, and give new examples
of improved synthesis. The interesting examples arise when
CjUi ¼ jVi, and yet, unitary synthesis of U uses fewer T
gates than V. For these remarkable examples, despite
Clifford equivalence of states jUi and jVi, there do not
exist Cliffords C1 and C2 such that C1UC2 ¼ V. One
explicit example, comparable to Jones’ construction [31],
starts with the Toff� gate corresponding to CCZ123CS12,
which is known to be unitarily synthesizable using four T
gates [29]. Because the “square-root-of-NOT”

ffiffiffiffi
X

p
is a

Clifford gate, we also have that

ðII
ffiffiffiffi
X

p
ÞjToff�i ¼ jCCZi: ð7Þ

Clifford equivalence of magic states provides an alternative
proof that CCZ can be performed with four T gates.
We have found a number of similar examples using the

following method: (i) Identify U and V with different T
counts, but whose states have the same robustness
RðjUiÞ ¼ RðjViÞ; (ii) Search for the Clifford C that takes
jUi to jVi. Existence of such a Clifford is not guaranteed by
virtue of RðjUiÞ ¼ RðjViÞ, but we found a Clifford in
every instance investigated. Note, also, that our T count is
over the CNOTþ T basis, which is less general than the
Cliffordþ T basis, but existing techniques for the latter
[24] are impractical for more than three qubits. The two
methods (Cliffordþ T and CNOTþ T) give the same T
count for CCZ, and it is an interesting open question
whether they always agree on the T cost of synthesizing
a third-level gate. We list, in compact notation, a few of the
new synthesis results and the T savings (more are provided
in the Supplemental Material [32]). For example, the CCZ

construction discussed above would be represented as

CCZ123!7→4 CS12CCZ123; ð8Þ

where the subscripts denote the qubits on which a third-
level gate acts and the numbers above the arrow denote the
T cost. Other examples include

CCZ123!7→4 CS12CS13; ð9Þ

CCZ123;145!11→8 CS12;13;14;15; ð10Þ

T1;2;3CS12;23;13!6→5 T2;3CS12;23;13: ð11Þ

Discussion.—Reformulating robustness as an optimiza-
tion in (2) facilitates a comparison with recent related
works, see Table I. For qudit-based computation, Veitch
et al. [7] showed that sum negativity snðρÞ of a state’s
discrete Wigner function was a well-defined resource,
and Pashayan et al. [21] showed how the run time of a
Monte Carlo type sampling algorithm was slower by a
factor quadratic in the size of the sum negativity. In the
qudit setting, the natural choice for the columns of A in
Eq. (2) are the vertices of the Wigner polytope (a larger, but
more geometrically simple object than the stabilizer poly-
tope), and phase point operators form a natural operator
basis. With these choices, b is a vectorized version of the
Wigner representation of ρ, and the matrix A becomes the
identity matrix.RðρÞ is simply the sum negativity (equal to
the l1 norm) of the Wigner quasiprobability distribution
associated with ρ. In other words, sum negativity is just
robustness relative to the set of operators with non-negative
discrete Wigner function. Unlike our approach, the discrete
Wigner function is not easily adapted to qubits (although,
see [49,50]).
In work by Bravyi, Smith, and Smolin [19] t-fold copies

of jHi are decomposed as linear combinations of stabilizer
vectors [20]; the number of terms χ—the stabilizer Schmidt
rank—in the decomposition quantifies the simulation over-
head. Finding the optimal decomposition is an l0 mini-
mization (∥x∥0 ¼ jfi∶xi ≠ 0gj), which is nonconvex and
Non-deterministic polynomial-time hard, limiting calcula-
tions to a small number of qubits. Bravyi and Gossett [18]

TABLE I. Restatement of related work in terms of norm-
minimizing solutions of a system of equations Ax ¼ b. The
amount of resource in an ancillary state jψi or ρ quantifies
the classical simulation overhead. In the first and third lines, the
columns of A are n-qubit stabilizer states (as complex vectors or
generalized Bloch vectors, respectively). In the second line, the
columns of A are extreme points of the Wigner polytope.

Resource jψi ∈ Cd ρ ∈ BðHÞ
χðjψiÞ ¼ ∥x∥0 Refs. [18,19]
snðρÞ ¼ ∥x∥1 Refs. [7,21]
RðρÞ ¼ ∥x∥1 This Letter
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extended this analysis by efficiently finding approximate
decompositions that are still sufficient for the task of
simulating the outcome of a quantum algorithm. This
approximation precludes the possibility of ordering states
by the amount of resource, however. We note that it is well
known in the signal processing literature [51] that the
solution to l1 minimization also provides a (qualitatively)
good solution for l0 minimization.
In Bravyi, Smith, and Smolin [19], it is conjectured that

jH⊗ti has the smallest χ of all t-fold copies of a single-qubit
nonstabilizer state. In this Letter, we see that jH⊗ti has
relatively large robustness. This is curious and worthy of
further investigation but is also strongly reminiscent of [52]
where the (entanglement) Schmidt rank is seen to disagree
with almost every other continuous entanglement measure.
A related open problem is to reconcile the fact that small
angle ancillae ð1; eiϕ≈0Þ= ffiffiffi

2
p

are cheap in our framework,
yet are harder to synthesize over the Cliffordþ T gate
[28] set and harder to fault-tolerantly distill [26,53].
Considerations such as this suggest that a combination
of both the stabilizer Schmidt rank and robustness pictures
of magic could prove useful.
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