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We study the critical behavior of a general contagion model where nodes are either active (e.g., with
opinion A, or functioning) or inactive (e.g., with opinion B, or damaged). The transitions between these two
states are determined by (i) spontaneous transitions independent of the neighborhood, (ii) transitions
induced by neighboring nodes, and (iii) spontaneous reverse transitions. The resulting dynamics is
extremely rich including limit cycles and random phase switching. We derive a unifying mean-field theory.
Specifically, we analytically show that the critical behavior of systems whose dynamics is governed by
processes (i)–(iii) can only exhibit three distinct regimes: (a) uncorrelated spontaneous transition dynamics,
(b) contact process dynamics, and (c) cusp catastrophes. This ends a long-standing debate on the
universality classes of complex contagion dynamics in mean field and substantially deepens its
mathematical understanding.
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In 1972 Schlögl proposed two models describing
autocatalytic chemical reactions [1] that are commonly
known today as Schlögl’s first and Schlögl’s second
model (henceforth referred to as Schlögl I and
Schlögl II). Schlögl I, also known as contact process
[2], comprises the important case of simple contagion, i.e.,
the susceptible-infected-susceptible (SIS) model where
healthy individuals can be infected due to the exposure
to a single infectious source, eventually leading to the
spread of an epidemic disease [2–5]. In contrast, Schlögl
II, also known as quadratic contact process [6], requires
contact with two sources. Later studies on Schlögl II
sparked a debate on its critical behavior and Grassberger
noticed in 1982 that a relation to the Ising universality
class “would be a most remarkable extension of the
universality hypothesis, from models with detailed balance
to models without it” to conclude that Schlögl II “is not an
example of universality between models with and without
detailed balance” [7].
Closely related to this debate, but more recently, a

generalized model of Schlögl II has been proposed where
an arbitrary number of sources is necessary to induce a
transition [8]. The study of the model’s mean-field critical
behavior led the authors to conjecture that such general
failure-recovery dynamics belong to the Ising universality
class [9]. This model is of particular interest since it not
only includes simple contagions but also complex con-
tagion phenomena such as the diffusion of innovations
[10,11], political mobilization [12], and viral marketing
[13] that require social reinforcement, i.e., the connection
to multiple sources [14,15]. The model displays an intricate
and very rich dynamics including hysteresis effects, limit
cycles, and cusp catastrophes [9,16–20]. Thus, a unifying
mean-field theory of the critical behavior is essential for a
broad range of dynamical systems.

However, the relation to contact process dynamics and
cusp catastrophes has only been shown for specific values
of the model’s parameters [20]. But, given the model’s
parameter regime, can we generally predict the dynamics
type? And does the model’s mean-field critical behavior
belong to the Ising universality class or not? Here we
answer these questions and analytically demonstrate that
the mean-field critical behavior of the model is restricted to
only three possible regimes: (a) uncorrelated spontaneous
transition dynamics, (b) contact process dynamics, and
(c) cusp catastrophes. Cusp catastrophes can display abrupt
transitions and hysteresis effects—phenomena that can
harm the proper functioning of real-world networked
systems since small variations in the system’s control
parameters may cause catastrophic transitions from a
seemingly well-functioning state to global malfunction
or severe outages [21–30].
Model.—The general contagion dynamics is defined in a

network whose constituents (i.e., nodes) are regarded as
either active (e.g., not damaged) or inactive (e.g., failed).
Three fundamental processes define the transitions between
these two states [9,20]: (i) nodes undergo a spontaneous
transition A → X from an active (A) to an inactive state (X)
in a time interval dt with probability pdt; (ii) if fewer than
or equal to m nearest neighbors of a node are active, the
node becomes inactive (Y) due to an induced transition, i.e.,
A → Y, with probability rdt, and (iii) a spontaneous reverse
transition with probability qdt if X → A or probability q0dt
if Y → A. The inactive states X and Y only differ in their
reverse transitions and are equivalent if q ¼ q0. Process
(ii) describes that a node with degree k can become inactive
if its number of inactive neighbors is larger or equal to
k −m. Similar to threshold models describing complex
contagion phenomena, the threshold m defines the number
of contacts to inactive nodes that is necessary to induce a
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transition as defined by process (ii) [14,31–33]. A low
value of m corresponds to the situation where many
inactive neighbors are required to sustain spreading. In
contrast, for a large value of m only a few inactive
neighbors can sustain the spreading process. Processes
(i)–(iii) are illustrated in Fig. 1.
Let aðtÞ ∈ ½0; 1� denote the total fraction of inactive

nodes. Thus, aðtÞ ¼ usponðtÞ þ uindðtÞ with usponðtÞ and
uindðtÞ being the fractions of nodes that are inactive due
to spontaneous and induced transitions, respectively. The
total fraction of inactive nodes in the stationary state is
referred to as ast. In accordance with Ref. [20] we derive the
mean-field rate equations by assuming a system with
homogeneous degrees in the thermodynamic limit that
exhibits perfect mixing. Here, perfect mixing either refers
to a network of randomly connected nodes with a sufficiently
large mean degree or dynamical rewiring [3,34]. For the
fraction of nodes that spontaneously became inactive we find

_uspon ¼ pð1 − aÞ − quspon; ð1Þ
where the first term accounts for the fact that active nodes
spontaneously become inactive with rate p [process (i)] and
the second term corresponds to the spontaneous reverse
transition with rate q [process (iii)]. Equation (1) is exact
since the network structure is not influencing these sponta-
neous transitions.
Induced transitions [process (ii)] can only occur for

nodes whose number of active neighbors is smaller than or
equal to m. Under the assumption of a perfectly mixed
population, the probability that a node of degree k is located
in such a neighborhood is Ek ¼

P
m
j¼0ð k

k−jÞak−jð1 − aÞj
[9,20]. The time evolution of the fraction of nodes that are
inactive due to induced transitions is therefore given by

_uind ¼ r
X
k

fkEkð1 − aÞ − q0uind; ð2Þ

with fk being the degree distribution. The first term
describes the occurrence of induced transitions [process
(ii)] with rate r of active nodes in a neighborhood where the
number of active neighbors is smaller than or equal to m,
whereas the second term accounts for the spontaneous
reverse transition to an active state with rate q0 [process

(iii)]. In order to study the influence of different threshold
valuesm on the mean-field critical behavior of Eqs. (1) and
(2), we consider a regular network with degree k, i.e., the
degree distribution fk0 ¼ δkk0 . We demonstrate below that
the model defined by processes (i)–(iii) can only exhibit
three different regimes depending on the choice of m. It
is important to notice that for more general degree
distributions the mean-field critical behavior still falls into
these classes; see Supplemental Material [35].
The coupled equations (1) and (2) admit oscillatory

behavior for q0 > q [20] as a dynamical feature that does
not belong to the critical behavior [18]. The equations
describing the critical behavior, i.e., _uspon ¼ 0 and
_uind ¼ 0, can be decoupled by multiplying one of them
with an appropriate constant excluding limit cycles [18]—
tantamount to setting q ¼ q0 ¼ 1. This yields

_a ¼ fða; r; pÞ ¼ rSðaÞ þ pð1 − aÞ − a; ð3Þ
with SðaÞ ¼ P

m
j¼0ð k

k−jÞak−jð1 − aÞjþ1 ¼ ð1 − aÞEk. We
use SðaÞ as shorthand notation for the probability that
an active node is located in a neighborhood that is able to
induce a transition. Thus, differences in the inactive states
X and Y, i.e., different q and q0, do not influence the critical
behavior of Eq. (3) but only rescale r and p. In the
following we analyze the stationary states of Eq. (3) that are
reached in the long-time limit.
Class (a): Uncorrelated spontaneous transitions.—We

start with the case m ¼ kwhere the number of active nodes
necessary to sustain spreading has to be smaller or equal to
the node’s degree k according to the definition of process
(ii). This describes the regime where spreading occurs
independently of the neighborhood’s state such as in
exogenously driven adoption dynamics [36,37],

_a ¼ ðrþ pÞð1 − aÞ − a ð4Þ
since Ek ¼ 1 and SðaÞ ¼ 1 − a. Equation (4) has only one
stationary state, i.e., astðr; pÞ ¼ ðrþ pÞ=ð1þ rþ pÞ; see
Fig. 2 (left).
Class (b): Contact dynamics.—By definition m ¼ k − 1

implies that k − 1 or fewer neighbors of a node have to
be active to induce a transition. This case describes a
contact process where one inactive neighbor is sufficient to
sustain spreading [3]. As demonstrated in Supplemental
Material [35], we find for p ¼ 0 that there exists a critical
rc ¼ k−1 separating an absorbing and an active phase, i.e.,

að1Þst ðr; 0Þ ¼ 0 as r ≤ rc and að2Þst ðr; 0Þ > 0 as r > rc. In the
limit of r → rc Eq. (3) takes the form

_a ¼ rkað1 − aÞ − a: ð5Þ
Equation (5) describes the mean-field contact process, SIS
dynamics, or Schlögl I [3,7]. In the limit of r → rc the order
parameter scales as astðr; 0Þ ∼ jr − rcjβ with β ¼ 1 and
adding the fieldlike contribution pð1 − aÞ to Eq. (5) yields

FIG. 1. Model. Spontaneous failure (A → X) and spontaneous
recovery (X → A) occurs with rates p and q, respectively. A node
may also fail (become inactive) dependent on its neighborhood, if
too few active nearest neighbors n ≤ m sustain the node’s activity
(A → Y with rate r). In addition, a failed node Y recovers
(Y → A) with rate q0. Active nodes (A) are purple while failed
ones (X and Y) are grey.
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astðrc; pÞ ∼ p1=δh as p → 0 with the field exponent δh ¼ 2.
We illustrate in Fig. 2 (center) the occurrence of only one
stable fixed point for p > 0. This also results in a smeared-
out transition for p > 0 instead of a second-order phase
transition for p ¼ 0 as shown in Fig. 3 (top panel). For

p ¼ 0 and r > rc one clearly sees that a
ð1Þ
st ðr; 0Þ is unstable

but að2Þst ðr; 0Þ is a stable fixed point.
Class (c): Cusp catastrophes.—For some values of m,

we find a metastable region as illustrated in Fig. 3 (right).
Inside this hysteresis region two stable fixed points coexist.
Phase switching is observed when fluctuations in systems
of finite size push the dynamics close to the unstable fixed
point, cf., Fig. 2 (right). Between the switching events the
dynamics remains in one of the two phases for some time.
The waiting times thus depend on the fluctuation strength
and the distance from one phase to the unstable state in the
phase portrait, cf., Fig. 2 (right). For m < k − 1 where
either two or more inactive neighbors are necessary to
induce a transition, we show that the corresponding
metastable regions always exist due to the relation to cusp
catastrophes [17]. For a detailed analytical treatment we
refer the reader to Supplemental Material [35]. The cusp
point where the two bifurcation lines intersect [cf.,
Fig. 3 (right)] is given by a0ðk;mÞ¼ðk−1−mÞ=ðkþ1Þ
together with the corresponding control parameters,

r0ðk;mÞ ¼ 1

Sða0Þ þ S0ða0Þð1 − a0Þ
; ð6Þ

and

p0ðk;mÞ ¼ S0ða0Þa0 − Sða0Þ
Sða0Þ þ S0ða0Þð1 − a0Þ

: ð7Þ

We illustrate the influence of different values of m on
ðr0; p0Þ and on the extent of the hysteresis area in
Supplemental Material [35]. Studying Eq. (3) in the vicinity
of ða0; r0; p0Þ, i.e., setting a ¼ a0 þ ~a, r ¼ r0 þ ~r,
p ¼ p0 þ ~p, yields for the Taylor expansion (omitted tilde)

_a ¼ rSða0Þ þ pð1 − a0Þ þ a½rS0ða0Þ − p� þ r0
6
S000ða0Þa3:

ð8Þ

We thus find by setting p or r to 0 respectively and solving
for the fixed point of Eq. (8),

aðrÞ ¼
�
−

6Sða0Þ
r0S000ða0Þ

�
1=3

r1=3 þOðr2=3Þ; ð9Þ

aðpÞ ¼
�
−
6ð1 − a0Þ
r0S000ða0Þ

�
1=3

p1=3 þOðp2=3Þ: ð10Þ

FIG. 2. Phase portraits of the general contagion model’s regimes. (Top panel) The phase portrait is shown for k ¼ 4 and different
values of m with arrows indicating the sign of _a (right arrow, _a > 0; left arrow, _a < 0). Black circles correspond to stable fixed points
and white circles to unstable ones. (Left) Form ¼ k there exists only one stable fixed point, whose position depends on p. We set r ¼ 1
and for the grey solid line p ¼ 1. (Center) For m ¼ k − 1 the dynamics resembles the phase space of a contact process with a stable
nonzero fixed point for r > rc, where rc defines the critical spreading rate below which a approaches 0 if p ¼ 0. For p > 0 and r > rc
the second-order phase transition gets smeared out. We set r ¼ 1 and for the grey solid line p ¼ 1. (Right) If m < k − 1, r exceeding r0
and 0 < p < pbif (inside the hysteresis region enclosed by the bifurcation lines) it is possible to find two stable fixed points. For
p > pbif the dynamics exhibits only one stable fixed point. We set r ¼ 10 and m ¼ 0. For the grey solid line (p < pbif ) we set p ¼ 0.2
and for the silver solid line (p > pbif ) we used p ¼ 0.6. (Bottom panel) The time evolution for different parameters in a regular random
graph with N ¼ 256 nodes and k ¼ 4. (Left) For m ¼ k ¼ 4, p ¼ 0.01, r ¼ 1.0 the dynamics grows until a stationary state is reached.
(Center) For m ¼ k − 1 ¼ 3, p ¼ 0.01, r ¼ 1.0 we find the typical logistic growth pattern. (Right) For m < k − 1 ¼ 1, p ¼ 0.24,
r ¼ 10 we encounter phase switching.
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In previous work, the critical behavior at the cusp point of a
regular random network (k ¼ 10 and m ¼ 4) has been
conjectured to belong to the Ising universality class
although by definition the dynamics corresponds to a
general contact process [20].
Final remarks.—We find that the critical behavior of the

general contagion model as formulated in Eq. (3) does not
belong to the Ising universality class but to exactly three
regimes. The first regime, m ¼ k, corresponds to purely

spontaneous failure and recovery dynamics. Form ¼ k − 1
the model recovers the critical behavior of the contact
process. A cusp catastrophe is found for allm < k − 1 with
the typical critical behavior at the cusp point [Eqs. (9) and
(10)]. This sheds analytical light onto a broad range of
spreading processes that are determined by the network’s
connectivity k and the threshold parameterm, cf., examples
in Table I.
We have demonstrated that the phase diagram corre-

sponds to a cusp catastrophe, when two or more inactive
nodes are needed to trigger induced node transitions. This
scenario typically implies dramatic and uncontrollable
global transitions in the network for many systems involv-
ing complex contagion dynamics. One could naively expect
that it could be beneficial for failure control to design
systems such that a component only fails if many of its
neighbors already failed, i.e., delaying the failure dynam-
ics. Our results suggest, however, that this delaying
procedure might facilitate uncontrollable transitions, hence
achieving exactly the opposite as initially intended. This
result agrees well with previous findings on delaying
procedures that have been applied to a SIS model
[44,45]. For low spatial dimensions or highly structured
networks, the assumptions of perfect mixing or indepen-
dent node-to-node interactions are not guaranteed. Still
mean-field approximations qualitatively describe a given
dynamics [3,4,46]; see examples given in Supplemental
Material [35].
Future work should establish the behavior of transients

as a function of threshold parameter m and the topology of
the network. It has been demonstrated that opinions as well
as coinfections may spread faster in clustered networks
compared to random ones [42,47]. This links our result to
the multiple exposure condition in complex contagion
phenomena.
In the study of collective behaviors, such as the adoption

of innovations, the distinction between exogenous and
endogenous factors is of great interest but often solely
based on a contact processlike adoption model [36,37]. Our
results suggest studying these processes within our more
general framework that incorporates contact processlike
adoption as one special case and can account for spreading
that relies on multiple contacts.

FIG. 3. Phase diagrams of contact dynamics and cusp
catastrophes. (Top panel) In the case of m ¼ k − 1, the phase
space corresponds to the one of Schlögl I or contact dynamics.
For vanishing p, a second-order phase transition from an
absorbing to an active phase occurs at rc. For a positive value
of p, the transition gets smeared out [3,38]. (Bottom panel)
For all m < k − 1, cusp catastrophes define the phase
space. Two in the thermodynamic limit stable states coexist
inside the hysteresis region (II) that is surrounded by bifurca-
tion lines (black solid lines) merging at the cusp point ðr0; p0Þ.
Outside the hysteresis region (I) only one stable state
exists. The critical point rc is defined as the transition point
for vanishing p.

TABLE I. Examples of models and processes that are related to the classes (a)–(c).

(a) m ¼ k (b) m ¼ k − 1 (c) m < k − 1

Exogenous factors influencing
adoption of innovations [37]a

Social response to exogenous
factors [36]b

Schlögl I [1,7] Contact process [2,3,38]a

SIS model [4,5]a Reggeon
field theory [39]a Directed
percolation [40]a Bass
model [37,41]a

Schlögl II [1,7]a Quadratic contact process [6]a

General contact process [8]a

Behavioral adoption [42]b Threshold models
of complex contagions [11,13–15,31–33]ab
or coordination games [43]b

aExact mean-field correspondence.
bPhenomenological correspondence.
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