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Based on protein structural ensembles determined by nuclear magnetic resonance, we study the position
fluctuations of residues by calculating distance-dependent correlations and conducting finite-size scaling
analysis. The fluctuations exhibit high susceptibility and long-range correlations up to the protein sizes.
The scaling relations between the correlations or susceptibility and protein sizes resemble those in other
physical and biological systems near their critical points. These results indicate that, at the native states,
motions of each residue are felt by every other one in the protein. We also find that proteins with larger
susceptibility are more frequently observed in nature. Overall, our results suggest that the protein’s native
state is critical.
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Introduction.—Protein molecules are formed by
unbranched chains of amino acids (or residues) and have
several structural types, i.e., the globular, fibrous, mem-
brane, and intrinsically disordered proteins. Globular pro-
teins, the majority of the proteins in nature, generally fold
into globular shapes through diffusive dynamics on a
minimally frustrated energy landscape [1]. It is this kind
of three-dimensional folded structure, known as a native
state, that make proteins capable of performing their
biological functions. A protein (hereafter, we mean the
globular protein) carries out its functions by switching from
one structure to another, even transiently, for instance,
when it recognizes and binds with other molecules. To
achieve such performance, the structure of the native state
of the protein must be susceptible enough to sense the
signal and switch to another structure, but it must also be
stable enough to warrant functional specificity and struc-
tural robustness. Coincidentally, these apparently compet-
ing demands are generically exhibited by physical systems
near their critical points [2–6], raising the question of
whether such competing demands could be mechanistically
resolved by certain kinds of critical behavior in proteins.
Critical fluctuations in protein equilibrium dynamics

have been emphasized already by a number of results,
including the power-law relation between a solvent-
accessible surface area and the volume of proteins [7],
the fractal-like structure of configuration space [8] and the
oscillation spectrum [9], the slowness of relaxation in
protein molecules [10,11], the overlap between the low-
frequency collective oscillation modes and large-scale
conformational changes in allosteric transitions [12–14],
critical water fluctuation near hydrated proteins [15], and so
on. A few works have already ventured to call the native

state an example of self-organized criticality, as in the
work by Phillips [16] or in the discussion on pairwise
correlations between residues in protein families [3]. Yet, a
direct characterization of the critical fluctuations near the
native states of proteins based on experimental data is still
incomplete.
Here, we study the fluctuations around the native states

of a large number of proteins based on their structural
ensembles determined by solution nuclear magnetic reso-
nance (NMR). Each structure of the ensemble is conjec-
tured here to be an instantiation of the conformations in the
native basin (please see Ref. [17] for some caveats). Note
that NMR-based structural ensembles have been used in the
characterization of landscape and conformational fluctua-
tions around the native state [18–20] and may encode
evolutionary constraints of protein structures [21]. We
examine the distance-dependent correlations of position
fluctuations of residues and conduct a finite-size scaling
analysis, demonstrating that the correlations and suscep-
tibility exhibit features similar to those in other physical
systems near their critical points, implying that even weak
local perturbations to any residue are felt by every other
residue of the entire protein. This may be an additional
universal characteristic of natural proteins.
Fluctuations and correlations: Data and definitions.—

Our data set contains 4988 protein structural ensembles
from the Protein Data Bank (PDB) [22]. Each ensemble
corresponds to a protein and has no less than 10 different
structures (see details in Ref. [17]). All proteins have no
more than 40% sequence similarity. For simplification, we
focus here on the Cα traces of these proteins. As shown in
Fig. 1(a), the first structure in each ensemble is selected
as the reference structure (in orange), and all the other
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structures (in grey) are aligned to it. By minimizing the
root-mean-square deviation (RMSD) of the Cα atoms,
the degrees of freedom related to the translational and
rotational motions are removed. After the alignment, the
position fluctuations of every residue (represented by the
Cα atom) can be calculated.
Let us introduce the following notation (see Fig. 1): For

each ensemble (of a given protein) in our data set, the qth
structure (with q ¼ 1; 2;…; Q) contains the coordinates of
all the residues—say, the ith residue is ~ri;q ¼ ðxi;q; yi;q; zi;qÞ
(for i ¼ 1; 2;…; N). Then, the displacement of the ith
residue in the qth structure can be calculated as the
deviation from the average structure of the protein,

Δ~ri;q ¼ ~ri;q − h~rii; ð1Þ

where h~rii ¼ ð1=QÞPQ
q¼1 ~ri;q is defined as the average

structure [see Fig. 1(b)]. Correspondingly, the magnitudes
of position fluctuations of every residue can be determined
by the norm jΔ~ri;qj for q ¼ 1; 2;…; Q structures [see
Fig. 1(c)], revealing the well-known variability of residue
positions in the structural ensembles [23]. The results are
insensitive to reference structures, model resolution, or
alignment algorithms (see Ref. [17]). The distance-
dependent correlation GðrÞ of these fluctuations for a
given protein can be described as

GðrÞ ¼
P

N
i<jKijδðr − rijÞP
N
i<j δðr − rijÞ

; ð2Þ

where Kij can be calculated based on the fluctuations,
and δðr − rijÞ is the Dirac delta function selecting residue
pairs at mutual distance r in the reference structure. This
definition is similar to that in Refs. [24,25] for other
systems and can be extended to the cases with multiple
proteins. Thus, the distance-dependent covarianceCðrÞ and
orientational correlation ϕðrÞ can be determined using
Eq. (2) with Kij ¼ Cij ¼ ð1=QÞPqΔ~ri;q · Δ~rj;q and Kij ¼
ϕij ¼ Cij=ðCiiCjjÞ1=2, respectively. Similar calculations
can be applied to the magnitude correlations (ϕ0, see
Ref. [17]).
Scale invariant correlations.—We find that the correla-

tion function ϕðrÞ shares common features across proteins.
To illustrate this behavior, ϕðrÞ is computed for two cases:
(1) eight proteins representing different structural classes
(such as the all α, all β; αþ β;… classes [26]), multi-
domain proteins, and multichain assemblies, respectively;
and (2) seven proteins with similar gyration radii
Rg ≃ 12 Å. In all cases ϕðrÞ display a similar behavior;
i.e., for each curve, ϕðrÞ decreases from its maximum at
r ∼ 3.8 Å (the intrinsic distance between two Cα atoms of
consecutive residues), crosses zero, reaches a negative
minimum, and finally increases or even oscillates again.
The correlation length ξ is defined by the distance r at
which ϕðrÞ crosses zero [e.g., the arrow in Fig. 2(a)]. From
visual inspection of the results in Fig. 2(b), it is evident that
proteins with similar sizes (i.e., similar Rg) have similar ξ.
This is further demonstrated by the scattering plot of ξ vs
Rg in Fig. 2(c) for all the proteins: We find that the
correlation lengths ξ are distributed in a band which is
approximately proportional to Rg: hξi ∼ Rg [the open
circles in Fig. 2(c)]. The behavior of the correlations is
not seen on a null model constructed by randomly
perturbing the positions of residues in an arbitrary structure
(see Ref. [17]).
To further explore the dependence of correlation ϕðrÞ on

the magnitudes of Rg, we divide our data set into different
subsets according to their Rg, i.e., subsets with Rg values
inside bins of [Rg − 0.5 Å, Rg þ 0.5 Å]. From these sub-
sets we compute the respective ϕðrÞ, which exhibit the
same behavior mentioned above [Fig. 2(d)]. For all proteins
investigated here, the distance-dependent correlation func-
tion is scale free: Rescaling, in each curve, the distance r by
its correlation length ξ results in a collapse of all curves of
ϕðr̂Þ with r̂ ¼ r=ξ [Fig. 2(e)]. We observe similar behavior
for the magnitude correlation (see Ref. [17]).
We now explore whether or not the scale-free correla-

tions are related to the residue composition (or interactions)
of proteins. We calculate the correlations [ϕðrÞ and CðrÞ]
for various types of residue pairs [27]. Figure 2(f) and its
inset show the correlations for four representative residue
pairs, i.e., the combinations of hydrophobic (isoleucine),
polar (threonine), or charged residues (lysine). We find that
all ϕðrÞ curves are almost coincident and have the same

(a) (b)

(c)

FIG. 1. (a) Example of a structural ensemble (protein PDB
code: 1BAK) showing the 20 structures (grey) aligned to the
reference structure (orange). (b) The average structure (red) and
the qth structure (cyan) for the protein in (a). The displacement
Δ~ri;q (or Δ~rj;q) of the ith (or jth) residue from its counterpart in
the average structure is marked with black arrows. The distance
rij between residues i and j is marked with red dashes. (c) The
magnitude of the residues’ position fluctuations jΔ~ri;qj for the qth
structure (q ¼ 1; 2;…) in the ensemble.
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correlation lengths, and all CðrÞ curves exhibit a similar
trend, indicating that the scale-free behavior is independent
of the residue composition. Even so, some additional
information concerning residue-residue interactions can
be revealed by comparing the CðrÞ of different types of
residue pairs. For example, the covariance CðrÞ of iso-
leucine-isoleucine pairs (I-I) at short distances is generally
smaller than that of other types of residue pairs, which
means smaller fluctuations and stronger interactions. This
is attributed to the fact that isoleucines are strongly
hydrophobic and usually deeply buried inside proteins.
Physically, the interaction strength can be estimated by
ϵij ∼ Cij=ðCiiCjjÞ; thus, ∼1=Cij [i.e., 1=CðrÞ] when the
correlations ϕðrÞ are almost the same for all residue pairs
[see Fig. 2(f)]. Consistently, a large covariance (so weak
interactions) for lysine-lysine pairs (K-K) at short distances
is also observed. These results reflect some detailed
interaction features of residue pairs, and they are in line
with previous work [20]. These aspects may help us to

refine the force field for coarse-grained models and to
elucidate the evolutionary constraint in proteins [28], and
they deserve further study.
Additional hints from finite-size scaling.—The types

of correlations described above resemble the collective
behaviors observed in a variety of biological and physical
systems [2,3,24,25,29] in which the correlations are ampli-
fied around the vicinity of the critical points. However,
most often, the system sizes are very small with respect to
their thermodynamic limit, such that the value of the control
parameter at which the susceptibility peaks depends on
system sizes. In turn, Attanasi et al. used this finite-size
limitation to probe the features of criticality near a critical
point [25]. We adopted Attanasi’s strategy for our data, first
defining a dimensionless shape factor s ¼ Na3=ðL1L2L3Þ
as the pseudocontrol parameter for a protein, in which
a¼ 3.8Å is the residue size, and L1, L2, and L3 are lengths
of the principle axes of the protein with L1 ≤ L2 ≤ L3.
Such a control parameter can also be understood as
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FIG. 3. Finite-size scaling. (a) Susceptibility χ vs shape factor s
for proteins with different sizes N. The peak height χm and
position sm show a power-law relation χm ∼ ðsm − scÞ−γ (thick
red line). (b) Scaling of peak heights with N as χm ∼ N−αγ=μ.
(c) Correlation length ξ vs protein size N and Rg vs N (inset).
(d) Shape factor s vs N. (e) Susceptibility χ vs shape factor s.
(f) Susceptibility χ vs protein size N. Error bars are standard
errors of the mean.
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FIG. 2. Correlation ϕðrÞ: (a) ϕðrÞ for proteins with various
structural features: 2I94 (α class), 1KIK (β class), 1W4U (αþ β),
1TI3 (α=β), 1QXF (small), 1HCW (designed), 2M3U (multi-
domain), and 1HV2 (multichain). The correlation length ξ (for
1HCW) is indicated by an arrow. (b) ϕðrÞ for proteins with
similar Rg ≈ 12 Å. (c) Scattering plot of ξ and Rg for all 4988
proteins. The red open circles show the average hξi for proteins
with similar Rg. (d) ϕðrÞ for the subsets of proteins in bins labeled
by Rg ¼ 7; 9;…; 23 Å (see text). (e) Scaling plot of ϕðr̂Þ with
r̂ ¼ r=ξ for curves in (d). (f) ϕðrÞ and covariance CðrÞ (inset)
related to specific types of residue pairs for proteins with
Rg ≈ 15 Å.
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“packing density” since L1L2L3 is proportional to the
volume of an ellipsoid. For densely packed proteins, s is
relatively large, and conversely, s decreases for loosely
packed proteins and those with loops. Then, the suscep-
tibility χ of a protein is defined as in Ref. [25],

χ ¼ s
N

XN

i<j

ϕijθðξ − rijÞ; ð3Þ

describing the total correlation in a unit volume within the
correlation length. As in Fig. 3(a), for sets of proteins with
different sizes N, the average susceptibility χ exhibits a
series of maximum χm at the corresponding sm (open
diamonds). As N increases, the peak χm becomes sharper
and the peak position sm approaches a critical value
sc ≈ 1.4, following the scaling relations χm ∼ ðsm − scÞ−γ
and χm ∼ Nαγ=ν [red lines in Figs. 3(a) and 3(b)].
If the behavior of the susceptibility corresponds to

critical dynamics, the following relations are expected to
hold: ξ ∼ Nα, s − sc ∼ N−α=ν, and χ ∼ Nαγ=ν. Despite
some variations, the fittings of the results [red lines in
Figs. 3(c)–3(f)] closely follow the expected scaling func-
tions. From these fittings, the following exponents are
determined. First, based on ξ ∼ Nα, we get α ¼ 0.40
[Fig. 3(c)], which is similar to the result α ¼ 0.32 based
on Rg ∼ Nα [inset of Fig. 3(c)]. This indicates that proteins
are tightly packed, and it is consistent with the critical
shape factor sc [30]. Second, for s − sc ∼ N−α=ν, we have
1=ν ≈ 2.87 (or ν ≈ 0.35) [Fig. 3(d)]. Third, γ can be
determined from the relations between χ and s (or N).
Figure 3(e) shows the relation χ ∼ ðs − scÞ−γ with γ ≈ 1.05,
and Fig. 3(f) depicts the relation χ ∼ Nαγ=ν with γ ≈ 1.03;
these relations are comparable to the fitting result
(γ ≈ 1.01) in Fig. 3(a). By taking integers, the approxi-
mated exponents are α ¼ 1=3, ν ¼ 1=3, γ ¼ 1. Thus, these
scale-invariant features obey similar scaling relations as in
other critical systems, demonstrating that the fluctuations
of the proteins’ native states are critical.
The results in Fig. 4(a) show some preference for

proteins to be near the critical state since the most frequent
shape factor (smax ¼ 1.5) is very close to the critical shape

factor sc ≈ 1.4 [i.e., Fig. 3(a)], where the susceptibility is
diverging in the thermodynamic limit. The analysis for
proteins with similar Rg is also consistent; as Fig. 4(b)
shows, the most probable shape factors smax are found to be
roughly the same as sm with the maximal susceptibility (see
Ref. [17]), indicating that proteins with high susceptibility
are most probable in nature. This suggest that there would
be some evolutionary preference for certain shapes, which
may be relevant to the previous observations on evolution
constraints in structure and dynamics [21,28,31,32].
In summary, for a protein’s native state determined by

NMR, the correlation functions of the structural fluctua-
tions exhibit universal features obeying distinctive scaling
behaviors of critical dynamics. Such criticality comes
together with short-range interactions and global kinetic
modes, and it is in line with the picture of minimal
frustration. Moreover, the uncovered relative abundance
of proteins with high susceptibility opens a novel window
to investigate the underlying relation between structure and
function, shedding light on the dynamics of protein folding,
misfolding, and aggregation as well as design.
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