
Atomic-Scale Magnetometry of Dynamic Magnetization

J. van Bree* and M. E. Flatté†

Department of Physics and Astronomy and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA
(Received 30 September 2015; published 23 February 2017)

The spatial resolution of imaging magnetometers has benefited from scanning probe techniques. The
requirement that the sample perturbs the scanning probe through a magnetic field external to its volume
limits magnetometry to samples with pre-existing magnetization. We propose a magnetometer in which the
perturbation is reversed: the probe’s magnetic field generates a response of the sample, which acts back on
the probe and changes its energy. For an NV− spin center in diamond this perturbation changes the fine-
structure splitting of the spin ground state. Sensitive measurement techniques using coherent detection
schemes then permit detection of the magnetic response of paramagnetic and diamagnetic materials.
This technique can measure the thickness of magnetically dead layers with better than 0.1 Å accuracy.

DOI: 10.1103/PhysRevLett.118.087601

Imaging of magnetic moments and magnetic fields
advances a wide range of fields: nuclear magnetic reso-
nance [1] clarifies the structure of molecules and biological
enzymes, superconducting quantum interference device
magnetometry [2] characterizes magnetically engineered
multilayers, and magnetic resonance imaging (MRI) [3]
distinguishes various types of tissue in medicine and
biology. The spatial resolution of imaging magnetometers
suffices, in principle, to observe interesting processes, such
as biological activity in a cell, which are obscured
from optical measurements by the diffraction limit [4].
In practice, however, the spatial resolution of even spe-
cialized MRI rarely surpasses μm [5], limited by the
sensitivity at which the nuclear spins can be detected
[6]. Various scanning probe techniques [7–9] improve this
spatial resolution. A promising approach, NV−-center
magnetometry [10], uses a defect formed by a substitu-
tional nitrogen atom and adjacent vacancy site in a diamond
crystal. The long spin-coherence time of this defect allows
optical initialization and detection, and coherent manipu-
lation with microwaves [11,12], resulting in exceptional
magnetic field sensitivity and spatial resolution at ambient
conditions [4,13]. These scanning-probe-based magneto-
meters require the sample’s magnetic field to perturb the
magnetically sensitive probe nearby. In NV−-center-based
magnetometry, for example, measurements of the splitting
between the spin ground state jJz ¼ �1i states detect
this magnetic field, see Fig. 1(a). This scheme, however,
requires the sample to possess an substantial magnetic field
external to its volume, which excludes weak-moment films,
as well as paramagnetic and diamagnetic materials, which
lack such external magnetic fields in isolation.
Here we propose to overcome this disadvantage by using

the probe’s magnetic field to perturb the sample instead of
relying on the sample’s magnetic field to perturb the probe.
For any sample magnetic permeability differing from
that of vacuum, the magnetic field of the probe will be

dynamically altered, changing the magnetic energy stored
in the probe’s magnetic field. For this approach, depicted in
Fig. 1(b), we predict that for an NV− center these changes
in magnetic energy effectively translate into a modification
of the crystal field splitting of the NV− center’s spin ground
state, see Fig. 1(a). Techniques have already been devel-
oped to measure small changes in this splitting for
thermometry purposes [14–16]. Our calculations show that
the magnetic energy approach to NV−-center magnetom-
etry makes it possible to measure the magnetic perme-
abilities of diamagnetic and paramagnetic materials. For a
unique application of this technique, we propose measuring
the thickness of magnetically dead layers [17]. We show it
is possible to determine this thickness with an accuracy
superior to 0.1 Å for experimentally realistic conditions.

(a) (b)

FIG. 1. (a) The NV− center’s ground state spin J ¼ 1 is split by
the crystal field and magnetic field. Conventional NV− magne-
tometry utilizes the splitting of the jJz ¼ �1i states. We propose
a way to measure magnetic response of materials using the
splitting between the jJz ¼ 0i and jJz ¼ �1i states. (b) Imple-
mentation of magnetic-energy magnetometry. The spin of an
NV− center is located at the apex of a scanning probe tip,
optically initialized (green) and detected (red). The spin’s
magnetic induction (blue) is perturbed by the presence of the
sample (gray), leading to modifications of the magnetic induction
(diamagnetic, yellow; paramagnetic, purple).
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Consider a spin with total angular momentum J in
region I, placed in close proximity to region II with a
different magnetic permeability μr [see Fig. 2(a)]. In the
absence of spin-orbit coupling, its magnetic moment
density

hμðxÞi ¼ 2μB
ℏ

hJðxÞi ¼ 2μB
ℏ

hJiPðxÞ ð1Þ

depends on its probability density PðxÞ, and the expect-
ation value of the spin operator J ¼ ðJx; Jy; JzÞ; here μB is
the Bohr magneton, and we took the g factor to be 2.
In the Supplemental Material [18] we show that this
relation holds for any N-particle state, e.g., the complicated
ground state of the NV− center comprising 6 electrons [22].
To simplify the calculation, we now treat the interaction of
the spin’s magnetic moment with its environment classi-
cally; we will address its quantum-mechanical nature later
on. The presence of a magnetic moment density requires a
current density jðxÞ ¼ ∇ × hμðxÞi, which provides a direct
expression for calculating, in the Coulomb gauge, the
energy stored in a magnetic field [23],

Emag ¼
1

2

Z
jðxÞ ·AðxÞd3x: ð2Þ

Here AðxÞ is the vector potential produced by jðxÞ. If
jðxÞ ¼ 0 in region II, Eq. (2) determines the magnetic
energy from AðxÞ in region I alone. The effect of region II
on the spin’s vector potential in region I can be included by
replacing region II with an image current density [23]

~jðxÞ ¼ μIIr − μIr
μIIr þ μIr

0
B@

jxðx; y; 2d − zÞ
jyðx; y; 2d − zÞ

−jzðx; y; 2d − zÞ

1
CA

x̂;ŷ;ẑ

; ð3Þ

where for simplicity we neglect any surface current at the
interface between the regions. A treatment of surface
currents would be required for conductive materials with
a nonzero component of their magnetization parallel to the
surface normal at the interface of the two regions. The
image current generates a vector potential ~AðxÞ; the total
vector potential in region I is then AðxÞ þ ~AðxÞ.
For ease of calculation we assume isolated spin systems

are approximately spherically symmetric and limited to a
sphere with radiusR < d. We will show later on that is a fair
approximation for the NV− center, even though that spin
center hasC3v symmetry [22]. For a spin oriented such that its
integratedmagneticmomentmakes an angle ηwith respect to
the z axis [see Fig. 2(a)], the spin’s current density

jðxÞ ¼ 2μBJ
dPðrÞ
dr

×

0
B@

0

sin η sinϕ

sin η cos θ cosϕ − cos η sin θ

1
CA

r̂;θ̂;ϕ̂

; ð4Þ

for r ≤ R. The vector potential resulting from this current
distribution, calculated by expanding the Green’s function in
spherical harmonics and performing several (partial) inte-
grations, is

AðxÞ ¼ −
2μ0μ

I
rμBJ
r2

�Z
r

0

Pðr0Þr02dr0
�

×

0
B@

0

sin η sinϕ

sin η cos θ cosϕ − cos η sin θ

1
CA

r̂;θ̂;ϕ̂

; ð5Þ

for r ≤ R, and the image current produces a vector potential

~AðxÞ ¼ μIIr − μIr
μIIr þ μIr

�
μ0μ

I
rμBJ

2πð4d2 − 4rd cos θþ r2Þ3=2
�

×

0
B@

−2d sin η sin θ sinϕ
ðr− 2d cosθÞ sin η sinϕ

ðr cosθ − 2dÞ sin η cosϕþ r cos η sin θ

1
CA

r̂;θ̂;ϕ̂

;

ð6Þ

for z < d. These vector potentials determine the spin’s
magnetic induction BðxÞ ¼ ∇ ×AðxÞ, see Fig. 2(b). The
magnetic induction is either repelled from (drawn to) region
II if μIIr < μIr (μIIr > μIr), as the magnetization induced in
region II by the spin’s magnetic field is either antiparallel
(diamagnetic) or parallel (paramagnetic) to the spin’s mag-
netic field.
Using Eq. (2), the magnetic energy

Emag ¼
16

3
μ0μ

I
rμ

2
Bπ

Z
R

0

PðrÞ2r2dr

þ
�
μIIr − μIr
μIIr þ μIr

�
μ0μ

I
rμ

2
BJ

2

32πd3
½3þ cos 2η�: ð7Þ

The first term is the magnetic energy of the spin itself, and
is inversely proportional to R3 (for PðrÞ ¼ ½j0ðπr=RÞ�2, a
spherical Bessel function of zeroth order). The magnetic
self-energy is experimentally inaccessible and goes to
infinity for R → 0, a well-known problem in classical
electrodynamics [23,24]. The second term in Eq. (7)
represents the change to the magnetic energy due to the
presence of region II. These corrections are independent of
PðrÞ due to the assumed spherical symmetry. The other
dependencies of the magnetic energy are trivial to under-
stand, after realizing that the change in magnetic energy
depends on how much of the spin’s magnetic induction
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penetrates region II. The magnitude of the angular variation
of the magnetic energy for d ¼ 1 nm is of the order of
10 neV (or 0.2 mK), which is extremely challenging to
measure by spectroscopy. Also, the resulting force
F ¼ −∇Emag ≈ aN exerted on the scanning probe would
be difficult to detect by atomic force microscopy. Instead,
we will show that the magnetic energy can be probed using
a coherent measurement of an NV− center’s spin.
The ground state of an NV−’s spin J ¼ 1 is effectively

described using the Hamiltonian HNV ¼ DGSJ2z , where
DGS ≈ 2.87 GHz is the fine-structure constant due to the
crystal field, and the z direction is theNV− center’s symmetry
axis [22], see Fig. 1(a). To compare theNV−-center spinwith
the spin considered in Fig. 2(a), it is convenient to orient
the NV− center’s symmetry axis perpendicular to the inter-
face between the two regions. It has recently been demon-
strated that such orientation can be realized deterministically
in practice [25]. Analogous to the spin considered in
Fig. 2(a), the NV− center’s spin is placed in the superposition
jJηi ¼ cos2ðη=2Þj þ 1i þ 1

2

ffiffiffi
2

p
sin ηj0i þ sin2ðη=2Þj − 1i,

such that the expectation value of the spin makes an angle η
with respect to the z axis. The energy of this state

hJηjHNVjJηi ¼
DGS

4
½3þ cos 2η� ð8Þ

is identical to the angular dependence of themagnetic energy
in Eq. (7). Therefore the effect of a nearby region with
different magnetic permeability on the spin of anNV− center
seems to effectively change its fine-structure constant.
A fully quantum-mechanical treatment of the spin results

in the magnetic energy Hamiltonian (see Supplemental
Material [18])

Hmag ¼
�
μIIr − μIr
μIIr þ μIr

�
μ0μ

I
rμ

2
B

16πℏ2d3
J2z ¼ DmagJ2z ; ð9Þ

so that the NV− center effectively has D ¼ DGS þDmag.
Since the magnetization induced in region II depends on the
spin and acts back on the spin itself, Hmag depends
on the spin squared. In the Supplemental Material [18]
we show that Hmag has a similar structure when PðxÞ has
cylindrical symmetry and its axial symmetry axis is
perpendicular to the interface between regions I and II.
We also calculated that cylindrical symmetry changes an
NV− center’s Dmag by ≤ 5% from the spherical approxi-
mation. Lowering the symmetry further to NV−’s C3v
symmetry leads to additional small corrections, which
we estimate to be less than 20% for an NV− center
1 nm away from the interface. Assuming a spherical
PðxÞ is therefore a reasonable approximation. Note that
in the classical limit J → ∞ we get hJηjHmagjJηi ¼ Emag,
and also that there is no effect for J ¼ 1

2
.

The following (briefly outlined) coherent measurement
protocol can be used to sensitively measureD; more details
can be found in Ref. [14]. The NV− center is first prepared
in the jJz ¼ 0i state using a pulsed optical excitation, by
making use of the spin-dependent decay from the excited-
state manifold to the ground-state manifold [22]. The spin
is then placed in a superposition of the jJz ¼ 0i and
jJz ¼ �1i states using a π=2microwave pulse at frequency
D. This superposition will acquire a phase expð−iDτÞ after
a free evolution time τ. By applying another π=2 micro-
wave pulse to project the spin onto the jJz ¼ 0i state, the
phase can be determined by optical measurement of the
jJz ¼ 0i population; D follows from measuring the phase

µr
I

z = d

z = 0

Region I

µr
IIRegion II µr  = 1 II

µr = 1 I

µr
 II

µr = 1 I

µr = 0 II

µr = 1

1

 I

(a) (b)

0 jmax-jmax

Current density

BmaxBmin

Magnetic induction

Increasing relative magnetic permeability

FIG. 2. (a) A spin is placed in region I with relative magnetic permeability μIr, adjacent to a semi-infinite region II with μIIr , filling the
half-space z > d. The spin makes an angle η with respect to the normal of the interface between the two regions. The color indicates
the magnitude of the (image) current distribution for PðrÞ ¼ ½j0ðπr=RÞ�2, a spherical Bessel function of zeroth order, and μIIr ¼ 2.
(b) The calculated magnetic induction for the situation as described in (a). The magnetic induction near the interface is parallel to the
interface for diamagnetic substances (μIIr ¼ 0, left), though perpendicular to the interface for paramagnetic materials (μIIr ≫ 1, right).
The magnitude of the magnetic induction is indicated by color, and its direction by the arrows of the streamlines.
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as a function of τ, most accurately through the use of a
reference oscillator. The spin will experience decoherence
during its free evolution; this can be mitigated using
dynamic decoupling protocols, which can be designed to
optimize the sensitivity at which D can be measured [14].
In Fig. 3 we show how Dmag depends both on the

distance d between the NV− center and the sample, and on
the relative magnetic permeability of the sample. Diamond
itself has a very weak diamagnetic response, μr ¼
1 − 2.2 × 10−5 [26], and has no free carriers. The NV−

center is therefore in practice magnetically insensitive to its
host, and Dmag is barely affected by the diamond’s shape.
Using a coherent measurement technique, D has been
measured with a sensitivity of 1.85 kHz=

ffiffiffiffiffiffi
Hz

p
[14].

Assuming a measurement time of 100 s, changes in D
of 0.2 kHz can therefore be detected for a bulk NV− center.
From Fig. 3 it appears possible to detect both paramagnetic
and diamagnetic substances if the NV− center is a few nm
away from the sample. Such small distances are conven-
tional in scanning probe microscopy [27], and have been
achieved in conventional NV−-center magnetometry [28].
Recent studies showed that the proximity of the surface
lowers the NV− center’s T2 coherence time due to a surface
electronic spin bath and/or a surface phonon-related
mechanism [29–31]. This increases the minimal detectable
change in D by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tbulk
2 =Tsurface

2

p
[14]. Based on the

experimental data of Ref. [31], we roughly estimated the
dependence of this ratio on d. We included in Fig. 3 both

the minimal detectable change in D estimated for the near
surface and reported for bulk NV− centers for a measure-
ment time of 100 s. Increasing T2 (potentially by mitigating
the surface phenomena by surface passivation), improving
sensing schemes, or extending the measurement time
would push the minimal detectable change in D down.
Our analysis is not limited to NV− centers; any spin

close to a region with different magnetic permeability will
experience an orientation-dependent magnetic energy,
which affects its dynamics. Therefore the spins of other
promising color centers [32], notably the divacancy in SiC,
could also be used to detect the magnetic properties of
nearby materials. Such systems would preferably have a
smaller fine-structure constant DGS, since in the proposed
measurement scheme the NV− center’s spin is precessing at
that frequency. Although this does not impede the effect of
the magnetic energy on the fine-structure constant, it does
set the frequency at which the magnetic properties of the
sample are probed; lowering this frequency would be
favorable. Alternatively, different measurement schemes
could be developed, which remove the necessity of the spin
precessing at such frequencies.
As an example of the added value of the proposed

magnetic-energy-based magnetometry, we suggest to use
this technique to measure the thickness t of magnetically
dead layers [17]. A common problem in magnetic multi-
layered materials, such as magnetic tunnel junctions [33], is
the magnetic inactivity of the top surface layer of the
structure, see inset of Fig. 4. We can make use of the strong
distance dependence of the magnetic energy (Emag ∝ d−3)
to sensitively determine the distance d between the NV−

center and the boundary of the magnetically active material.

FIG. 3. The magnetic energy contribution Dmag to the fine-
structure constant as function of the distance d between the NV−

center and the sample, for samples having different magnetic
permeabilities. The grey lines indicate the measurable change in
D for a measurement time of 100 s, reported for a bulk NV−

center (dot-dash) and estimated for surface NV− centers (dash);
see text for details. We took the low-frequency values for μr and
assumed the superconductor to be a perfect diamagnet (i.e.,
vanishing penetration depth). The μr of pyrolytic carbon, bis-
muth, and water are, respectively, 0.999 590, 0.999 834, and
0.999 992.

FIG. 4. The accuracy at which the thickness t of a magnetically
dead layer (μr is about 1) can be determined, as a function of the
distance d between the NV− center and the magnetically active
region (μr ≫ 1), for different minimal detectable changes Dmin.
Based on Ref. [14], Dmin ¼ 0.2 kHz for a bulk NV− center and a
measurement time of 100 s. See Fig. 3 and its discussion in the
text to determine an estimated Dmin close to the surface.
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As the separation between the NV− center and the physical
boundary of the sample is known through calibration, the
thickness t of the magnetically inactive material can be
determined with high precision. Figure 4 predicts that this
can be achieved with remarkable accuracy.
We propose a method to sense the magnetic properties of

materials based on the magnetic energy of a nearby spin.
This method inverts the conventional scheme of scanning-
probe magnetometers, making it possible to sense materials
which have no natural magnetic field external to their
volume. This scheme can be applied to NV− centers and,
using realistic assumptions, we predict it should be possible
to detect both para- and diamagnetic materials. Future
theoretical work towards implementing different color
centers or different measurement schemes could lower
the frequency at which the magnetic properties are probed
and improve the predicted sensitivity.
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