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A symmetry-protected topological phase has nontrivial surface states in the presence of certain
symmetries, which can either be gapless or be degenerate. In this work, we study the physical consequence
of such gapless surface states at the bulk quantum phase transition (QPT) that spontaneously breaks these
symmetries. The two-dimensional Affleck-Kennedy-Lieb-Tasaki phase on a square lattice and its QPTs to
Néel ordered phases are realized with the spin-1=2 Heisenberg model on a decorated square lattice. With
large-scale quantum Monte Carlo simulations, we show that even though the bulk QPTs are governed by
the conventional Landau phase transition theory, the gapless surface states induce unconventional
universality classes of the surface critical behavior.
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Introduction.—Symmetry-protected topological (SPT)
phases are bulk-gapped phases that cannot continuously
evolve into direct product states without explicitly breaking
certain symmetries or closing the bulk energy gap [1,2]. This
concept is the generalization of the Haldane phase of spin-1
antiferromagnetic (AF) Heisenberg chains [3–5] and the
topological band insulators [6,7]. One of the hallmarks of
SPTphases is the presence of nontrivial surface states that are
either gapless or degenerate, which cannot be removed if the
symmetries are preserved. In this work, we explore the
physical consequence of the gapless surface state when the
bulk SPT phase undergoes a quantumphase transition (QPT)
that spontaneously breaks the protecting symmetries.
We study the spin-1=2 Heisenberg model on a decorated

square lattice (also called a square-octagon lattice, see Fig. 1,
left panel). It realizes the two-dimensional (2D) spin-2
Affleck-Kennedy-Lieb-Tasaki (AKLT) phase [8], which is
a SPT phase protected by the spin rotational symmetry
together with the spatial translational symmetry [9,10].
Its surface state is a spin-1=2 chain with effective AF
Heisenberg interactions, which is gapless if the symmetries
are preserved. Besides the AKLT phase, this model can also
be tuned by varying the intraunit cell (intra-UC) coupling
strength J into two different Néel ordered phases, which
spontaneously break the spin rotational symmetry, and a
topologically trivial disordered phase dubbed a plaquette
valence bond crystal (PVBC) (Fig. 1, right panel). These
phases are separated by three quantum critical points (QCPs).
Two of them are from the AKLT phase to the Néel ordered
phases, and theother one is from thePVBCphase tooneof the
Néel ordered phases. Therefore, this model is suitable for
examining the role of the symmetry-protected gapless surface
state at the QCP and contrasting it with the more conven-
tional case.

This model is free of magnetic frustration and can be
studied with quantum Monte Carlo (QMC) simulations.
On the AF side (J > 0), the model is equivalent to the
nearest-neighbor AF Heisenberg model on the CaV4O9

lattice. Two QCPs were identified in Ref. [11], and one of
them, Jc1 from the PVBC phase to the S ¼ 1=2 Néel order,
was shown to be in the three-dimensional (3D) O(3)
universality class [12], which is expected from the Landau
phase transition theory of spontaneous symmetry breaking.
In this work, we carry out large-scale QMC simulations
around all three QCPs and show that all of them belong to
the 3D O(3) universality class no matter whether they are
adjacent to the AKLT SPT phase or not. Therefore, the SPT
order does not change the universality class of the bulk QCP
that spontaneously breaks its protecting symmetry.
What is the physical consequence of the gapless surface

state of an SPT phase at the QCP then? If a disordered

FIG. 1. Left: The decorated square lattice. Within each UC
there are four sites. The inter-UC Heisenberg coupling J0 is
antiferromagnetic and is set to be unity. The intra-UC Heisenberg
coupling J can be either ferromagnetic or antiferromagnetic.
Right: The quantum phase diagram obtained by tuning J. Four
phases are separated by three QCPs. A cartoon is sketched for a
representative state in each phase. The ellipses in the AKLT phase
and the circles in the PVBC phase denote the spin singlets formed
on the bonds and on the plaquettes, respectively. Note that the
ordered patterns are different in the two Néel ordered phases.
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system with free surfaces undergoes a phase transition to a
symmetry-breaking ordered phase, the long-range order is
also induced on the surface. At the bulk critical point, the
surface also has long-range correlation and exhibits
singularities in its physical quantities, which are called
surface critical behavior. If the surface is gapped in the
disordered phase, which is the case of an “ordinary tran-
sition,” its long-range correlation at the critical point is
purely induced from the bulk; therefore, the surface critical
behavior is expected to be fully determined by the bulk.
However, if an SPT phase undergoes a phase transition that
breaks its protecting symmetry, the gapless surface state
hybridizes with the gapless modes at the critical point and
leads to unconventional surface critical behavior.
Surface critical behavior has been studied in classical

phase transitions for more than four decades [13].
It is characterized by several critical exponents, which are
defined with the surface thermodynamic quantities and
correlation functions and satisfy scaling relations among
each other and with the bulk critical exponents [13,14]. We
show that the surface critical exponents at the PVBC-Néel
orderQCPare consistentwith those found in the 3Dclassical
Heisenberg model [15], which confirms the universality. At
the other two QCPs from the AKLT phase to the Néel
ordered phases, the surface critical exponents are found to be
distinct from those at the PVBC-Néel order QCP despite the
same bulk universality class. These exponents satisfy the
scaling relations, thereby consistently establishing a new
surface universality class at each QCP, which is the physical
consequence of the gapless surface state.
Model and methods.—The spin-1=2 Heisenberg model

on the decorated square lattice (Fig. 1, left panel) is
given by

H ¼ J
X

hiji
Si · Sj þ J0

X

hiji0
Si · Sj; ð1Þ

inwhich hiji denotes the intra-UCbonds,while hiji0 denotes
the inter-UC bonds. We consider the AF inter-UC coupling
and set J0 to be unity. By tuning the intra-UC coupling J from
antiferromagnetic to ferromagnetic, the model realizes four
phases separated by three QCPs denoted by Jci, i ¼ 1, 2, 3
(Fig. 1, right panel). The nature of each phase can be
understood by examining one typical point: (i) J → þ∞:
In this limit, the lattice reduces to disjoint plaquettes. The
ground state is the direct product state of the spin singlets
formed on these plaquettes, which is disordered and gapped.
Therefore, we dub this phase a “plaquette valence bond
crystal.”This phase is adiabatically connected to the spin-gap
phase of CaV4O9 [16,17]. (ii) J ¼ 1: This model is equiv-
alent to the uniform nearest-neighbor AF Heisenberg model
on the CaV4O9 lattice. Its ground state has Néel order [11].
(iii) J ¼ 0: The lattice reduces to disjoint inter-UC bonds. Its
ground state is the direct product state of these bond singlets,
which is disordered and gapped. Projecting this state into the
total-spin-2 subspace in each UC precisely yields the 2D

AKLT state on the square lattice [8]. On a lattice with a free
straight surface, the dangling bonds on the surface form a
spin-1=2 chain with an effective AF coupling, which is
gapless if the spin rotational symmetry and the translational
symmetry are preserved. Therefore, we believe that this state
is adiabatically connected to the 2DAKLTstate. This is also a
“fragileMott insulator” phase [18]. (iv)J → −∞: Because of
the dominant intra-UC ferromagnetic coupling, each UC has
total spin 2. These blocks formNéel order due to the inter-UC
AFcoupling. This is similar to the block-AFordered phase of
K2Fe4Se5 except for the larger spin sizes of Fe ions [19,20].
We study all three QCPs in detail using the stochastic

series expansion (SSE) QMC simulations with the loop
algorithm [21,22] on lattices with the linear sizeL (4L2 sites)
from 8 to 80 and the inverse temperature β ¼ 2L. The fully
periodic boundary condition is adopted to extract the
QCP positions and the bulk critical exponents; afterwards
the openboundary condition is taken in one direction to study
the surface critical behavior. For each lattice size, 106

Monte Carlo steps are performed at each coupling strength.
Various physical quantities are measured after each step.
The parallel tempering and the multihistogram reweighting
techniques are adopted to further improve the data quality.
The statistical errors are found to be negligible in fitting the
critical exponents.
Bulk QCPs.—All three QCPs are associated with the

spontaneous breaking of the spin rotational symmetry.
The order parameter is the staggered magnetization,

mz
s ¼

1

4L2

X

i

ð−1ÞiSzi ; ð2Þ

in which ð−1Þi ¼ þ1 or −1 according to the Néel order
patterns sketched in Fig. 1. The Binder ratios are derived
from mz

s, Q1 ¼ hðmz
sÞ2i=hjmz

sji2, and Q2 ¼ hðmz
sÞ4i=

hðmz
sÞ2i2. The second-moment correlation length is derived

from the static spin structure factors, SðqÞ ¼ P
re

−iq·rCðrÞ,

ξ ¼ L
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðπ; πÞ

Sðπ þ 2π=L; πÞ − 1

s

; ð3Þ

in which CðrÞ ¼ hSzrSz0i is the spin correlation function.
The spin stiffness ρs and the uniform susceptibility χu are
measured with the improved estimators [23]. At a QCP of
the AF Heisenberg model, Q1, Q2, ξ=L, ρsβ, and χuβ are
dimensionless, so these quantities are adopted to estimate
the QCPs with the standard ðL; 2LÞ crossing analysis [24].
The results are listed in Table I.
Various physical quantities, including the slopes of the

above dimensionless quantities, the staggered magnetic
susceptibility χs, the static spin structure factor Sðπ; πÞ, the
spin correlation at half of the lattice size CðL=2; L=2Þ, and
the staggered magnetization mz

s, are evaluated at the QCPs
with the reweighting technique. They are used in the finite-
size scaling analysis to obtain the critical exponents [24].
The dynamical critical exponent z is found to be 1 within
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error bars at all three QCPs [24], which is consistent with
the asymptotic Lorentz invariance. The results of the
correlation length exponent ν, the anomalous dimension
η, and the magnetization exponent β are summarized in
Table I. Results of the 3D O(3) field theory [25] are also
listed for comparison. All three QCPs are found to be
consistent with the 3D O(3) universality class, which is
expected from the Landau phase transition theory.
Surface critical behavior.—For a system with two free

surfaces, the singular part of the free energy density in the
quantum critical regime is contributed by the bulk part and
the surface part [13,26],

fðδ; h; h1;LÞ ¼ fbðδ; h;LÞ þ
2

L
f1ðδ; h; h1;LÞ; ð4Þ

in which δ ¼ J − Jc. h is the staggered magnetic field that
couples to the bulk order parameter mz

s, while h1 is the
surface staggered field that couples to the order parameter
restricted to the surface.
The bulk free energy fb satisfies the scaling ansatz on a

finite lattice with a linear size L,

fbðδ; h;LÞ ∼ L−ðdþzÞ ~fbðδLyδ ; hLyhÞ; ð5Þ
in which ~fb is a smooth function of its arguments. yδ and yh
are the scaling dimensions of δ and h, respectively. They
are related to ν and β by ν ¼ 1=yδ, and β=ν ¼ dþ z − yh.
The surface free energy f1 satisfies a similar scaling

ansatz,

f1ðδ; h; h1;LÞ ∼ L−ðdþz−1Þ ~f1ðδLyδ ; hLyh ; h1Lyh1Þ; ð6Þ
in which the scaling dimension yh1 of the surface field h1
enters as an independent exponent to characterize the
universality class of the surface critical behavior.
The surface critical behavior can be derived from Eq. (6).

The surface staggered magnetic susceptibility χ1;1 with
respect to the surface field h1 has the following finite-size
scaling form:

χ1;1 ¼ −
∂2f1
∂h21 ∼ L−ðdþz−1−2yh1 Þ: ð7Þ

The long-range spin correlation on the surface is char-
acterized by two anomalous dimensions, η∥ and η⊥, which

are defined as follows. With one endpoint denoted by 0
fixed on the surface, the spin correlation function C∥ðrÞ ¼
hSzrSz0i with r parallel to the surface scales as

jC∥ðrÞj ∼ r−ðdþz−2þη∥Þ; ð8Þ
while C⊥ðrÞ ¼ hSzrSz0i with r perpendicular to the surface
scales as

jC⊥ðrÞj ∼ r−ðdþz−2þη⊥Þ: ð9Þ

These surface critical exponents are not independent of
each other. They satisfy the following scaling relations
[13,14,27]:

1 − η∥ ¼ −ðdþ z − 1 − 2yh1Þ; ð10Þ

2η⊥ ¼ η∥ þ η: ð11Þ
On a lattice with an open boundary condition along one

direction, we treat the sites that would be dangling bonds in
the AKLT state as the surface layers. The surface staggered
susceptibility χ1;1 and the spin correlation functions
C∥ðL=2Þ and C⊥ðL=2Þ are evaluated at the bulk QCPs.
The results are shown in Figs. 2 and 3.

TABLE I. Summary of the bulk and the surface critical exponents. The bulk critical exponents of the 3D O(3) field theory calculated
by high-order perturbation [25] and the surface critical exponent yh1 of the 3D classical Heisenberg model estimated by Monte Carlo
simulations [15] are also listed for comparison.

Jc z ν η β yh1 η∥ η⊥
Jc1 1.064382(13) 1.0008(16) 0.7060(13) 0.0357(13) 0.3663(8) 0.810(20) 1.327(25) 0.680(8)
Jc2 0.603520(10) 1.001(5) 0.7052(9) 0.031(4) 0.3642(13) 1.7276(14) −0.449ð5Þ −0.2090ð15Þ
Jc3 −0.934251ð11Þ 0.9999(13) 0.7052(15) 0.0365(10) 0.3659(9) 1.7802(16) −0.561ð4Þ −0.2707ð24Þ
3D O(3) field
theory [25]

� � � � � � 0.7073(35) 0.0355(25) 0.3662(25)

3D classical
Heisenberg [15]

� � � � � � 0.813(2)

FIG. 2. The surface staggered susceptibility χ1;1 at the bulk
QCPs vs the inverse lattice size 1=L. The data at Jc1 are fitted
to cþ aL−ð2−2yh1 Þð1þ bL−1Þ, while the data at Jc2;3 to
aL−ð2−2yh1 Þð1þ bL−1Þ. All error bars are much smaller than
the symbol sizes.
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It is easy to see that the surface critical behavior at Jc1
is qualitatively different from that at Jc2 and Jc3. We first
focus on Jc1. Fitting the χ1;1 data at Jc1 to Eq. (7) plus a
constant, which takes care of the nonsingular contribution,
and a subleading correction term, i.e., to the formula
cþ aL−ð2−2yh1 Þð1þ bL−1Þ, yields the estimate yh1 ¼
0.810ð20Þ. It is consistent with the result of the 3D
classical Heisenberg model at the ordinary transition
[15], yh1 ¼ 0.813ð2Þ, thereby confirming the universality
of the surface critical behavior. The spin correlation
functions C∥ðL=2Þ and C⊥ðL=2Þ are fitted to Eqs. (8)
and (9), which yields η∥ ¼ 1.327ð25Þ, and η⊥ ¼ 0.680ð8Þ.
These exponents satisfy the scaling relations Eqs. (10) and
(11) within error bars.
The surface susceptibilities and the correlation functions

at Jc2 and Jc3 are also fitted to Eqs. (7), (8), and (9) (see
Figs. 2 and 3). The critical exponents are distinct from
those at Jc1 and in the 3D classical Heisenberg model
(Table I). The scaling dimension yh1 is much larger: yh1 ¼
1.7276ð14Þ at Jc2, and yh1 ¼ 1.7802ð16Þ at Jc3. The
anomalous dimensions are negative: η∥ ¼ −0.449ð5Þ and
η⊥ ¼ −0.2090ð15Þ at Jc2, and η∥ ¼ −0.561ð4Þ and η⊥ ¼
−0.2707ð24Þ at Jc3, suggesting stronger spin correlations
on the surface. These exponents also satisfy the scaling
relations within error bars; therefore, they consistently
establish new universality classes of the surface critical
behavior. Moreover, the exponents at Jc2 and Jc3 are
slightly different from each other, showing that they belong
to two distinct universality classes, which may be a result of
the different surface and bulk couplings.
Discussions.—In order to highlight the different spin

correlations on the surfaces, we calculate the second-
moment correlation length on the surface, ξ1, at each
QCP, which is derived from the surface static structure
factors similarly to Eq. (3). As shown in Fig. 4, ξ1=L at Jc1
decays to zero as L → ∞, which can be fitted with a power
law, ξ1=L ∼ L−0.581ð4Þ. In contrast, ξ1=L at Jc2 and Jc3
extrapolate to finite values as L → ∞. Such a distinction
can be phenomenologically understood as follows. At Jc1,

the long-range correlation on the surface is purely induced
from the bulk and is much weaker than the bulk correlation.
Because the bulk correlation length ξ diverges faster than ξ1,
the surface critical behavior is controlled by ξ and the bulk
criticality. On the other hand, the gapless surface state in the
AKLT phase hybridizes with the bulk critical modes, hence
strongly enhancing the surface correlation and resulting in
different universality classes of the surface critical behavior.
The bulk QCPs are described by the 3D O(3) nonlinear σ

model,

Lb ¼
1

2g

X

μ¼x;y;τ

ð∂μnÞ2; ð12Þ

which also determines the surface critical behavior in the
conventional case. At QCPs adjacent to the AKLT phase,
the surface critical theory should be complemented by the
topological θ term, ðiθ=4π2Þn · ð∂τn × ∂xnÞ, in which n is
restricted on the surface, and θ ¼ π. It originates from the
effective spin-1=2 Heisenberg chain on the surface and
captures the gapless surface state [5,28]. The detailed
theoretical analysis of this unconventional surface critical
behavior is left for future studies.
This physical picture can be generalized to the surface

critical behavior of other SPT phases with gapless surface
states at QCPs that spontaneously break the protecting
symmetries. The gapless surface states will hybridize with
the critical modes and lead to unconventional universality
classes of surface critical behavior. The surface critical
behavior of topological insulators and superconductors was
analytically studied in Ref. [29]. There are other open
issues. First, the surface of an SPT phase can be gapped
with topological order. In such a case, the critical modes on
the surface are carried by fractionalized particles, which is
expected to induce an exotic universality class of surface
critical behavior similar to the QCP from a bulk topological
ordered phase to a symmetry-breaking ordered phase
[30,31]. Second, the SPT phases can undergo surface
reconstructions without changing the bulk phases. For
example, the surface of the AKLT phase can spontaneously

FIG. 3. The spin correlation functions C∥ðL=2Þ and C⊥ðL=2Þ at
the bulk QCPs vs the inverse lattice size 1=L. These data are fitted
to aL−ð1þη∥ð⊥ÞÞð1þ bL−1Þ.

FIG. 4. The surface spin correlation lengths ξ1 divided by the
lattice size L vs 1=L. The data at Jc1 are fitted to aL−b, yielding
b ¼ 0.581ð4Þ, while the data at Jc2 and Jc3 are fitted to a constant
plus subleading correction terms.
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dimerize and break the translational symmetry. The surface
critical behavior could be in different universality classes.
Conclusion.—To summarize, the 2D AKLT phase is

realized in the Heisenberg model on a decorated square
lattice. Its quantum phase transitions to Néel ordered
phases are studied in detail with QMC simulations.
Although these bulk QCPs belong to the 3D O(3) univer-
sality class, which is captured by the Landau phase
transition theory, the surface critical behavior in the
presence of free surfaces is shown to belong to different
universality classes than the ordinary transition of the 3D
classical Heisenberg model. We propose that such a
distinction is a physical consequence of the symmetry-
protected gapless surface state of the AKLT phase. This
model can be simulated with cold atoms in optical lattices
in the future.
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