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Bilayer transition metal dichalcogenides (TMDs) belong to a class of materials with two unique features,
the coupled spin-valley-layer degrees of freedom and the crystal structure that is globally centrosymmetric
but locally noncentrosymmetric. In this Letter, we will show that the combination of these two features can
lead to a rich phase diagram for unconventional superconductivity, including intralayer and interlayer
singlet pairings and interlayer triplet pairings, in bilayer superconducting TMDs. In particular, we predict
that the inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov state can exist in bilayer TMDs under an
in-plane magnetic field. We also discuss the experimental relevance of our results and possible
experimental signatures.
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Introduction.—Unconventional superconductivity [1–3],
which is beyond the simple s-wave spin-singlet super-
conductivity in the Bardeen-Cooper-Schrieffer theory, can
emerge in two dimensional (2D) systems, such as surfaces
[4–6] or interfaces [7], superconducting heterostructures
[8], and 2D or quasi-2D superconducting materials [9–14].
Recently, it was demonstrated that “Ising” superconductivity
can exist in monolayer transition metal dichalcogenides
(TMDs), such as MoS2 [11,13] and NbSe2 [12], based on
experimental observation that in-plane upper critical field
Hc2;∥ is far beyond the paramagnetic limit. The space
symmetry group of the monolayer TMD is the D3h group
without inversion symmetry. Thus, the monolayer super-
conducting TMDs belong to the so-called noncentrosym-
metric superconductors (SCs) [3], for which spin-up and
spin-down Fermi surfaces are split by strong spin-orbit
coupling (SOC), leading to a mixing of spin singlet and
triplet pairings [15,16]. The existence of triplet components
can enhance Hc2;∥ in noncentrosymmetric SCs [17]. In
monolayer TMDs, Ising SOC fixes the spin axis along the
out-of-plane direction and greatly reduces the Zeeman effect
of in-planemagnetic fields, thus, explaining the experimental
observations of highHc2;∥. A highHc2;∥was also observed in
bilayer TMDs (e.g., NbSe2) [12]. The crystal structure of
bilayer TMDs is described by the symmetry groupD3d with
inversion symmetry, and the corresponding Fermi surfaces
are spin degenerate. This experimental result motivates us
to study the difference between bilayer superconducting
TMDs and conventional SCs.
First, we illustrate the difference from the symmetry

aspect. Although inversion symmetry exists in bilayer
TMDs, the inversion center should be chosen at the center
between two layers, labeled by “P” in Fig. 1(a). As a result,
bilayer TMDs belong to a class of materials which are
globally centrosymmetric, but locally noncentrosymmetric
(for each layer). The absence of local inversion symmetry
can lead to “hidden” spin polarization [18,19], spin-layer

locking [20,21], and other exotic physical phenomena [22].
The superconductivity for these materials has been
studied in the CeCoIn5=YbCoIn5 hybrid system [10,23],
SrPtAs [23–26], and other bilayer Rashba systems [27].
Inhomogeneous Fulde-Ferrell-Larkin-Ovchinikov (FFLO)
states were proposed in the CeCoIn5=YbCoIn5 hybrid
system while chiral topological dþ id superconductivity
was suggested in SrPtAs. Bilayer TMDs possess global
D3d symmetry and local D3h symmetry, labeled as
D3dðD3hÞ, and thus, it is equivalent to that of SrPtAs
[25], but different from the CeCoIn5=YbCoIn5 hybrid
system with D3dðC3vÞ symmetry. Because of the D3h
symmetry in each layer, Ising SOC is expected in bilayer
TMDs and SrPtAs, while Rashba SOC occurs in the
CeCoIn5=YbCoIn5 hybrid system.
In this Letter, we study possible superconducting pair-

ings based on a prototype model of bilayer TMDs. The
superconducting phase diagram as a function of intralayer
(U0) and interlayer (V0) interactions is summarized in
Fig. 1(c), in which three different pairings, intralayer A1g

pairing, intralayer A1u pairing, and interlayer Eu pairing can
exist, depending on the strength and sign of U0 and V0. We
study the stability of these superconducting pairings under
external magnetic fields. In particular, we predict the FFLO
state with a finite momentum pairing [28,29] induced by
the orbital effect of in-plane magnetic fields.
Phase diagram of bilayer TMDs.—A prototype model

for TMDs [15,16,30] was first derived for the conduction
band of MoS2 and can also be applied to other TMDs. This
model is constructed on a triangle lattice of Mo atoms
with 4dz2 orbitals for each monolayer. The conduction band
minima appear at two momenta �K, and one can regard
�K as a valley index and expand the tight-binding model
around�K for each layer, as described in Refs. [15,16]. We
extend this model to bilayer TMDs by including a layer
index. Let us label the annihilation fermion operator as cσ;η,
where σ ¼ ↑;↓ is for spin and η ¼ � is for two layers.
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On the basis of ðc↑;þ; c↓;þ; c↑;−; c↓;−Þ, the effective
Hamiltonian is

Ĥ0ðp ¼ ϵKþ kÞ ¼ ξk þ ϵβSOCszτz þ tτx; ð1Þ

where s and τ are two sets of Pauli matrices for spin
and layer degrees, ϵ ¼ � is for the valley index, and
ξk ¼ ðℏ2=2mÞk2 − μ with chemical potential μ. Here, the
βSOC term is the Ising SOC while the t term is the
hybridization between two layers. The eigenenergy is given
by εs;λ ¼ ξk þ λD0 with D0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2SOC þ t2

p
and s; λ ¼ �:s

does not appear, and thus, the eigenstates with opposite s
are degenerate, as shown in Fig. 1(b). Next, we consider
the symmetry classification of superconducting pairings,
similar to that in Cu doped Bi2Se3 SCs [31] since both
materials belong to D3d group. We only consider s-wave
pairing, and thus, the gap function Δ̂ is independent of
momentum and can be expanded in terms of s and τ
(Δ̂ ¼ P

i;μΔi;μγi;μ where γi;μ is a 4 × 4 matrix composed of
s and τ, and i, μ are the indices labeling different
representations). Because of the anticommutation relation
between fermion operators, the gap function needs to be
antisymmetric, and thus, only six matrices sy, syτx, syτz, τy,
sxτy, szτy can couple to s-wave pairing. The classification
of these representation matrices, as well as their explicit
physical meanings, are listed in Table I, from which ΔA1g;1

andΔA1u
describe intralayer singlet pairings,ΔA1g;2 andΔA2u

give interlayer singlet pairings, while ΔEu;1 and ΔEu;2 are
interlayer triplet pairings. The pairing interaction can also

be decomposed into different pairing channels as VA1g;1 ¼
VA1u

¼ ðU0=2Þ and VA1g;2¼VA2u
¼VEu;1¼VEu;2¼ðV0=2Þ

(See Supplemental Material [32] for details).
Possible superconducting pairings are studied based on

the linearized gap equations [1–3] (See Supplemental
Material [32]). Around the valley K (or −K), the Fermi
surfaces for two spin states in each layer are well separated
by the Ising SOC βSOC term. Therefore, below, we assume
the Fermi energy only crosses the lower energy band at
each valley [Fig. 1(b)] for simplicity. The pairings with
different representations do not couple to each other, and
thus, we can compute the critical temperature Tc in each
representation, separately. The critical temperature normally
takes the form kTc0;i ¼ 2γωD

π exp ½−ð1=N0Vi;effÞ�, with the
representation index i, density of states N0, the Debye
frequency ωD, and γ ≈ 1.77. The effective interaction is
given by VA1g;eff ¼ 2U0 þ 2V0ðt2=D2

0Þ for the A1g pairing,
VA1u;eff ¼ 2U0ðβ2SOC=D2

0Þ for the A1u pairing, and VEu;eff ¼
2V0ðβ2SOC=D2

0Þ for the Eu pairing, from which the corre-
sponding critical temperature in each channel can be
determined. The A2u pairing does not exist because
VA2u;eff ¼ 0. The phase diagram can be extracted by com-
paring different Tc0;i [Fig. 1(c)]. The A1g pairing is favored
by strong attractive intralayer interaction (U0 > 0), while the
Eu pairing is favored by strong attractive interlayer inter-
action (V0 > 0). These two phases are separated by the
critical line U0 ¼ ðβ2SOC − t2ÞV0=D2

0. The A1u pairing
appears when the repulsive interlayer interaction is stronger
than the attractive intralayer interaction (−V0 > U0 > 0)
because repulsive interlayer interaction will favor opposite
phases of pairing functions between two layers. The A1u
phase is separated from the A1g phase by a critical line
U0 ¼ −V0. When both U0 and V0 are repulsive interaction
(U0; V0 < 0), no superconductivity can exist. For the 2D Eu
pairing, ΔEu;1 and ΔEu;2 are degenerate. By taking into
account the fourth order term in the Landau free energy (See
Supplemental Material [32]), either nematic superconduc-
tivity ðΔEu;1;ΔEu;2Þ¼ΔEu

ðcosθ;sinθÞ (θ is a constant) [34]
or chiral superconductivity with ðΔEu;1;ΔEu;2Þ ¼ ΔEu

ð1; iÞ
can be stabilized [35].

FIG. 1. (a) Crystal structure of bilayer TMDs MX2 with the
inversion center labeled by P. (b) Schematics for energy
dispersion of bilayer TMDs where red and blue are for spin-
up and spin-down, and solid and dashed lines are for the top and
bottom layers. Here, each band is doubly degenerate and we shift
the dashed lines a little for the view. (c) The phase diagram as a
function of U0 and V0. The red, blue, and green lines are the
phase boundary, separating three superconducting phases, the
A1g, A1u, and Eu pairings, and the metallic phase. (d) Exper-
imental setup of bilayer TMD SC/conventional SC junction.

TABLE I. The matrix form and the explicit physical meaning of
Cooper pairs in the representations A1g, A1u, A2u, and Eu of the
D3d group. Here, cση is electron operator with η ¼ � for layer
index and σ for spin. s and τ are Pauli matrices for spin and layer.

Representation Matrix form Explicit form

A1g:
ΔA1g;1 sy c↑þc↓þ þ c↑−c↓−
ΔA1g;2 syτx c↑þc↓− þ c↑−c↓þ

A1u: ΔA1u
syτz c↑þc↓þ − c↑−c↓−

A2u: ΔA2u
sxτy c↑þc↓− − c↑−c↓þ

Eu:
ΔEu;1 τy c↑þc↑−
ΔEu;2 szτy c↓þc↓−
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Magnetic field effect.—Next, we study the effect of
magnetic fields on bilayer superconducting TMDs.
Generally, magnetic fields have two effects, the Zeeman
effect and the orbital effect. The Zeeman coupling is
given by

ĤZee ¼ gB · s; ð2Þ

whereB labels the magnetic field, and the Bohr magneton is
absorbed into g factor. The orbital effect is normally included
by replacing the momentum k in ξk with the canonical
momentum π ¼ kþ ðe=ℏÞA with vector potential A
(Peierls substitution). The orbital effect of in-planemagnetic
fields is normally not important for a quasi-2D system.
However, that is not the case in bilayer TMDs due to its
unusual band structure. Let us choose A ¼ ð0;−Bxz; 0Þ for
the in-plane magnetic field Bx, in which the origin z ¼ 0 is
located at the center between two layers. As a result, ξk is
changed to ξπ ¼ ðℏ2=2mÞfk2x þ ½ky − ðeBxz0=2ℏÞτz�2g − μ
after the substitution, where z0 is the distance between two
layers.
The Ginzburg-Landau free energy is constructed as

L ¼ 1

2

X
q;iμ;jν

Δ�
i;μðqÞ

�
1

Vi
δijδμν − χð2Þij;μνðq;BÞ

�
Δj;νðqÞ þ L4;

ð3Þ

where L4 describes the fourth order term. The super-

conductivity susceptibility χð2Þij;μν can be expanded up to
the second order of q and B (qiqj, BiBj and qiBj with
i; j ¼ x, y, z). The magnetic field correction to Tc0;i for
different pairings can be extracted by minimizing the above
free energy (See Supplemental Material [32]).
Because of the orbital effect, the Hamiltonian (1) is

changed to

Ĥ0
0 ¼ ξk − ℏvQkyτz þ ϵβSOCszτz þ tτx; ð4Þ

where vQ ¼ ðeBxz0=2mÞ, and the chemical potential μ in
ξk is redefined to include the B2

x term. First, we focus on
the limit t → 0, in which the energy dispersion of the
Hamiltonian (4) is shown in Fig. 2(a). The energy bands on
the top and bottom layers are shifted in the opposite
directions in the momentum space by Q ¼ ðeBxz0=2ℏÞ.
This momentum shift cannot be “gauged away,” and thus,
the intralayer spin-singlet pairing must carry a nonzero total
momentum. This immediately suggests the possibility of
the FFLO state [28,29,36] for the intralayer singlet A1g and
A1u pairings. Since in-plane magnetic fields break the D3d
symmetry, the orbital effect can mix the singlet A1g and A1u

pairings. In the limit t → 0 with Tc0;A1g
¼ Tc0;A1u

¼ Tc0,
we derive the free energy for the coupled A1g and A1u

pairings as

L2 ¼
1

2

X
q

��
4N0ln

�
T
Tc0

�
− Pðhx;qÞ

� X
i¼A1g;A1u

jΔij2

−Δ�
A1g

QΔA1u
− Δ�

A1u
QΔA1g

�
; ð5Þ

in which the detailed form of P and Q are defined in the
Supplemental Material [32]. The term Q ¼ ~KBxqy with a
constant ~K mixes A1g and A1u pairings. With a trans-
formation Δ� ¼ ð1= ffiffiffi

2
p ÞðΔA1g

� ΔA1u
Þ, the free energy is

changed to

L2 ¼
1

2

X
α¼�;q

�
4N0 ln

�
T
Tc0

�
−PðBx;qÞ−αQðBx;qÞ

�
jΔαj2:

ð6Þ
The corresponding critical temperature is determined by
maximizing lnðTc=Tc0Þ¼ ð1=4N0Þ½PðBx;qÞþαQðBx;qÞ�
with respect to q and α. From the explicit form of P andQ,
the maximum is achieved by qx ¼ 0 and jqyj ¼ qc ¼
ðeBxz0=ℏÞ ¼ 2Q, thus, realizing the FFLO state. The
corresponding correction to Tc vanishes (Tc ¼ Tc0).
As a comparison, the Tc of zero momentum pairing
decreases with magnetic fields as ln ðTcðq ¼ 0Þ=Tc0Þ ¼
−CðℏvQkf=2πkTÞ2 ∝ −B2

x, and the FFLO state is always
favored in the limit t → 0 for in-plane magnetic fields.
The form of the stable pairing function depends on

the sign of Q. Let us assume Bx > 0 and ~K > 0 in
Q ¼ ~KBxqy. If qy ¼ qc > 0, Q > 0, and thus, Δþ pairing
is favored. If qy ¼ −qc < 0, Q < 0, and Δ− is favored.
ΔþðqcÞ and Δ−ð−qcÞ are degenerate for the second order
term of free energy. The FFLO state in the real space is

ΔðrÞ ¼ ΔþðqcÞeiqcy þ Δ−ð−qcÞe−iqcy: ð7Þ

The exact form of pairing function is determined by the
fourth order term of ΔþðqcÞ and Δ−ð−qcÞ, which is
phenomenologically given by

L4 ¼ BsðjΔþðqcÞj2 þ jΔ−ð−qcÞj2Þ2
þ BaðjΔþðqcÞj2 − jΔ−ð−qcÞj2Þ2: ð8Þ

If Ba > 0, we need jΔþðqcÞj ¼ jΔ−ð−qcÞj ¼ Δ0 to mini-
mize L4. This state is known as the LO phase [28,37], stripe
phase [4,6,8,38], or pair density wave [10,39,40]. If Ba < 0,
we have either ΔþðqcÞ ¼ 0 or Δ−ð−qcÞ ¼ 0. In either
case, the amplitude ofΔðrÞ is fixedwhile its phase oscillates,
thus, corresponding to the FF phase [29,37] or helical
phase [3,38,41–43]. In the limit t → 0, the coefficients
are computed as Bs ¼ Ba ¼ ð7N0ζð3Þ=16ðπkTc0Þ2Þ > 0.
Therefore, the stripe phase will be favored under an in-plane
magnetic field near the critical temperature.
In the limit t → 0, Δþ and Δ− are just the singlet pairing

on the top and bottom layers according to Table I, and the
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free energies for Δþ and Δ− become decoupled [see Eq. (6)
for L2 term and Eq. (96) of the Supplemental Material [32]
for L4 term]. Thus, the FFLO state in Eq. (7) can be viewed
as two independent helical phases in two separate layers.
No supercurrent or other observables can exist in helical
phases [41,42] for infinite large systems. To identify
this phase, one needs to consider a Josephson junction
structure between bilayer TMDs and conventional SCs
[Fig. 1(d)], similar to that discussed in Refs. [3,42,44]
(See Supplemental Material [32] for details). For a finite
tunneling t, the interference between two layers leads to the
gap oscillation of the stripe phase in Eq. (7).
We notice that the FFLO phase has been proposed in

noncentrosymmetric SCs under a magnetic field [6,23], and
emphasize two essential differences between our case and
noncentrosymmetric SCs. (1) In noncentrosymmetric SCs,
the FFLO phase is induced by a linear gradient term
~KijΔ�BiqjΔ ( ~Kij is a parameter) that breaks inversion
symmetry. In contrast, inversion symmetry is preserved in
our system, and the linear gradient term ( ~KijΔ�

A1g
BiqjΔA1u

)

couples two pairings with opposite parities. (2) In non-
centrosymmetric SCs, the FFLO phase results from the
combination of Rashba SOC and the Zeeman effect of
magnetic fields. In our system, the FFLO phase is from the
combination of Ising SOC and the orbital effect of magnetic
fields. In particular, this phase can occur for any magnetic
field strength in the weak interlayer coupling limit t → 0.
When t ≠ 0, the occurrence of the FFLO phase will be

shifted to a finite magnetic field. We numerically minimize
free energy with respect to the momentum q and calculate
the magnetic field correction to Tc. In Fig. 2(b), Tc=Tc0 is
plotted as a function of magnetic field Bx for three
hybridization parameters t. The momenta for the corre-
sponding stable states, labeled by qc, are shown in Fig. 2(c).
For a weak hybridization (t ¼ 1 meV ≪ βso ¼ 40 meV),
the FFLO phase appears at a small Bx, and the correspond-
ing qc approaches 2Q with increasing Bx. There is only a
weak correction to Tc for the FFLO phase [black line in
Fig. 2(b)]. When increasing hybridization (t ¼ 5, 10 meV),
zero momentum pairing is favored for small Bx and leads
to a rapid decrease of Tc with its correction given by
ðTc − Tc0Þ=Tc0 ∝ −B2

x [red and blue lines in Fig. 2(b)].
When Bx becomes larger, a transition from zero momentum
pairing to the FFLO state occurs. The decreasing in Tc

deviates from the B2
x dependence and becomes weaker.

Experimentally, one can control the hybridization between
two layers by inserting an insulating layer in between, and
the deviation of the Tc correction from the B2

x dependence
implies the occurrence of FFLO states in this system.
We construct the phase diagram further by evaluating
gap functions as a function of temperatures and magnetic
fields for t ¼ 10 meV in Fig. 2(d). As discussed in the
Supplemental Material [32], the transition from the normal
metal [III region in Fig. 2(d)] to uniform SC (I region) or

FFLO state (II region) is of the second order type [dashed
red line in Fig. 2(d)] while the transition between uniform
SC and the FFLO state is of the first order type [dashed
black line in Fig. 2(d)].
Besides the orbital effect, the correction of Tc due to the

Zeeman effect, which is the same for zero-momentum
pairing and the FFLOphase, is given by ln ðTc;A1g

=Tc0;A1g
Þ ∝

−ðt2=β2SOCÞB2
x for the A1g pairing and ln ðTc;A1g

=Tc0;A1g
Þ ∝

−ðt4=β4SOCÞB2
x for the A1u pairing. Additional factors

t2=β2SOC and t4=β4SOC greatly reduce the B2
x dependence

for the A1g and A1u pairings in the limit t ≪ βSOC. The
behavior of the out-of-plane magnetic field (Bz) in bilayer
TMDs is similar to that of conventional SCs (See
Supplemental Material [32]).
Discussion and conclusion.—In realistic bilayer super-

conducting TMDs, the Fermi energy will cross both spin
states in each layer. However, once the Ising SOC is larger
than other energy scales (βSOC ≫ t, ℏkfvQ, ℏvfq), the
Fermi surfaces for two spin states in one layer are well
separated and the physics discussed here should be valid
qualitatively. Based on the existing experiments, the A1g

pairing is most likely to exist at a zero magnetic field. In
this case, we predict the occurrence of the FFLO phase
under an in-plane magnetic field. The onset magnetic field
is determined by the ratio between interlayer hybridization

FIG. 2. (a) Schematics of energy dispersion for bilayer TMDs
with an in-plane magnetic field. Here, red and blue colors are for
opposite spins and solid and dashed lines are for top and bottom
layers. (b) The magnetic field dependence of the critical temper-
ature Tc. Here, the black line is for t ¼ 1 meV, the red line is for
t ¼ 5 meV, while the blue is for t ¼ 10 meV. Other parameters
are chosen as βSOC ¼ 40meV, ℏvF ¼ 30meV ·nm and m ¼
0.6me with electron mass me, N0U0 ¼ 0.3 and N0V0 ¼ 0.1.
Only the orbital effect is taken into account. (c) The momentum
qc for the stable pairing state as a function of Bx. (d) Phase
diagram as a function of Bx and Tc. Here, I is for conventional SC
phase, II is for FFLO state, and III is for normal metal.
BN ¼ ð2kTc0=vfz0Þ.
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t and Ising SOC βSOC (ðt=βSOCÞ ∼ 0.27 in NbSe2) [12]. Our
results suggest a weak correction to Tc for both the orbital
and Zeeman effects of in-plane magnetic fields, thus,
consistent with experimental observations of high in-plane
critical fields in bilayer superconducting TMDs [12]. The
central physics in this Letter originates from the unique
crystal symmetry property, and similar physics can occur in
SrPtAs [25]. Similar physics also occurs for exciton
condensate in a bilayer system [45,46]. Our work paves
a new avenue to search for unconventional superconduc-
tivity in 2D centrosymmetric SCs.
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