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It was proposed recently that the out-of-time-ordered four-point correlator (OTOC) may serve as a useful
characteristic of quantum-chaotic behavior, because, in the semiclassical limit ℏ → 0, its rate of exponential
growth resembles the classical Lyapunov exponent. Here, we calculate the four-point correlator CðtÞ for the
classical and quantum kicked rotor—a textbook driven chaotic system—and compare its growth rate at
initial times with the standard definition of the classical Lyapunov exponent. Using both quantum and
classical arguments, we show that the OTOC’s growth rate and the Lyapunov exponent are, in general,
distinct quantities, corresponding to the logarithm of the phase-space averaged divergence rate of classical
trajectories and to the phase-space average of the logarithm, respectively. The difference appears to be more
pronounced in the regime of low kicking strength K, where no classical chaos exists globally. In this case,
the Lyapunov exponent quickly decreases as K → 0, while the OTOC’s growth rate may decrease much
slower, showing a higher sensitivity to small chaotic islands in the phase space. We also show that the
quantum correlator as a function of time exhibits a clear singularity at the Ehrenfest time tE: transitioning
from a time-independent value of t−1 lnCðtÞ at t < tE to its monotonic decrease with time at t > tE. We
note that the underlying physics here is the same as in the theory of weak (dynamical) localization [Aleiner
and Larkin, Phys. Rev. B 54, 14423 (1996); Tian, Kamenev, and Larkin, Phys. Rev. Lett. 93, 124101
(2004)] and is due to a delay in the onset of quantum interference effects, which occur sharply at a time of
the order of the Ehrenfest time.
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One of the central goals in the study of quantum chaos is
to establish a correspondence principle between classical
and quantum dynamics of classically chaotic systems
[1–7]. Several previous works [7–11] have attempted to
recover fingerprints of classical chaos in quantum dynam-
ics. In particular, Aleiner and Larkin [12] showed the
existence of a semiclassical “quantum chaotic” regime
attributed to the delay in the onset of quantum effects
(due to weak localization) revealing the key measure of
classical chaos—the Lyapunov exponent (LE). Recently,
the subject of quantum chaos has been revived by the
discovery of an unexpected conjecture that puts a bound on
the growth rate of an out-of-time-ordered four-point corre-
lator (OTOC) [13,14]. The OTOC was first introduced by
Larkin and Ovchinnikov to quantify the regime of validity
of quasiclassical methods in the theory of superconductiv-
ity [15]. The growth rate of the OTOC appears to be closely
related to the LE. Recent works have proposed experi-
mental protocols to probe the OTOC in cold atom and
cavity QED setups [16]. Several recent preprints have
employed the OTOC as a probe to characterize many-
body-localized systems [17].
In this Letter, we calculate the Lyapunov exponent,

OTOC, and the two-point correlator for the quantum kicked

rotor (QKR), which is a canonical driven model of quantum
chaos [1,4,18]. The classical version of this model manifests
a regular-to-chaotic transition (as a function of driving
strength K) which enables us to benchmark the behavior
of the OTOC against the presence and absence of classical
chaos. We show that, in the limit of a small dimensionless
effective Planck’s constant, ℏeff → 0, there exists a “quan-
tum chaotic” regime [12,15] at early times where theOTOC,
CðtÞ ¼ −h½p̂ðtÞ; p̂ð0Þ�2i, grows exponentially. This corre-
lator’s growth rate ~λ, that we abbreviate for brevity as CGR,
is found to be independent of the dimensionless Planck’s
constant ℏeff and is purely classical at early times for the
kicked rotor. Most importantly, the CGR and the standard
definition of the LE in classical systems are shown to be
different at all nonzero kicking strengths. In particular, for
the classically regular regime K < Kcr, the CGR signifi-
cantly exceeds the LE due to a much higher sensitivity to the
presence of small chaotic islands. For the classically deeply
chaotic regimeK ≫ Kcr, the CGR exceeds the LE by nearly
a constant. We attribute these distinctions to different
averaging procedures carried out to extract these exponents
and posit that this statement may be more general than the
specific QKR model studied here.
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We also show that deviations from the essentially
classical behavior of the OTOC, CðtÞ ∼ e2~λt, occur sharply
at a time of the order of the Ehrenfest time tE, where the
OTOC exhibits a clear cusp. This corresponds to the
minimal time it takes classical trajectories to self-intersect,
indicating the onset of quantum interference effects [12].
This is in analogy to the weak dynamical localization
discussed by Tian, Kamenev, and Larkin [19]. At longer
times t > tE, the quantum disordering effects subdue the
exponential growth dictated by the CGR to a power-law
growth.
Finally, we calculate the two-point correlation function

and show that the CGR ~λ is not revealed in this quantity (nor
in the single-point average—e.g., the kinetic energy as has
been well known [7]). However, we find that the two-point
correlator does contain fingerprints of a classical transition
from regular dynamics to chaos even deep in the quantum
regime at long times, which has been a subject of long-
standing theoretical and experimental interest [20–23].
Quantum kicked rotor.—The dimensionless Hamiltonian

of the QKR [1,4,18] can be written as

Ĥ ¼ p̂2

2
þ K cosðx̂ÞΔðtÞ; ð1Þ

whereΔðtÞ ¼ P∞
j¼−∞ δðt − jÞ is the sumof δ pulses, p̂ is the

dimensionless angular-momentum operator, x̂ is the angular
coordinate operator, and t is the dimensionless time. The
QKR is characterized by two parameters. One of them, the
kicking strength K, comes from the classical kicked rotor
(KR, also called the Chirikov standard map) [24]. Another
parameter is the dimensionless effective Planck constant ℏeff ,
which enters the dimensionless angular-momentum operator
(p̂ ¼ −iℏeffð∂=∂xÞ) and the dimensionless Schrödinger
equation: iℏeffð∂=∂tÞjΨi ¼ ĤjΨi. The eigenvalues of p̂
are quantized in units of ℏeff due to the periodic boundary
conditions.Note that, in the classicalKR, the parameterℏeff is
absent. In order to understand how classical chaos emerges
from quantum dynamics, we compute the OTOC and the
two-point correlator in the regime of ℏeff → 0 at short
time scales.
Lyapunov exponent and OTOC’s growth rate (CGR).—

To specify our quantum diagnostics for chaotic behavior in
the QKR, we choose the OTOC CðtÞ [14,15] and two-point
correlator BðtÞ as

CðtÞ ¼ −h½p̂ðtÞ; p̂ð0Þ�2i; BðtÞ ¼ Rehp̂ðtÞp̂ð0Þi: ð2Þ

We point out that CðtÞ is closely related to the Loschmidt
echo (also known as fidelity). In the previous works,
fidelity has been used as a theoretical and experimental
diagnostic of quantum chaos [16,25–32].
Before carrying out quantum calculations, we consider

the classical correspondence of CðtÞ [14,15]. At short times
t < tE [33],

CðtÞ ¼ ℏ2
eff

��∂p̂ðtÞ
∂xð0Þ

�
2
�

≈ ℏ2
eff

���
ΔpðtÞ
Δxð0Þ

�
2
��

¼ CclðtÞ; ð3Þ

where we changed the expectation value of the operator
derivative to the finite differences of the classical variables
averaged over the phase space (⟪…⟫ denotes the classical
phase-space average). Note that the averaging allows for a
direct comparison of the classical CclðtÞ to the quantum
CðtÞ. Such a comparison would not always be possible for
local quantities because of quantum wave-packet spread-
ing. Because of the presence of chaotic regions in the

phase space, CclðtÞ ∼ e2~λt grows exponentially. Now we
compare this classical CGR, ~λ ¼ limt→∞ limΔxð0Þ→0ð1=2tÞ
lnf½Cclðtþ 1Þ�=½Cclð1Þ�g, to the standard definition of
the LE: λ ¼ ⟪limt→∞ limdð0Þ→0ð1=tÞ ln½dðtÞ=dð0Þ�⟫ [34]

(where dðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ΔxðtÞ�2 þ ½ΔpðtÞ�2

p
). Notice that there

are key differences between the definitions of λ and ~λ
coming from the different orders of squaring, averaging,
taking a ratio, and applying a logarithm.
Next, we proceed to check if the classical correspon-

dence follows through in a quantum calculation of CðtÞ and
compare the rate of exponential growth of CðtÞ to ~λ
extracted from CclðtÞ and to the LE λ. For the quantum
case, the averaging in Eq. (2) is performed in the
Schrödinger picture over some initial state jΨð0Þi. We
use individual angular-momentum eigenstates jΨð0Þi ¼
jni∶p̂jni ¼ ℏeffnjni and Gaussian wave packets:

jΨð0Þi ¼
X∞
n¼−∞

að0Þn jni; að0Þn ∼ exp

�
−
ℏ2
effðn − n0Þ2

2σ2

�
;

ð4Þ

where n0 ¼ p0=ℏeff . In this calculation, we use wave
packet (4) with p0 ¼ 0 and σ ¼ 4. Numerically, jΨi is
represented in a finite basis of eigenstates jni,
n ∈ ½−N;N − 1�. All functions of only p̂ are applied in
this basis, and all functions of only x̂ are applied in the
Fourier-transformed representation. We use an adaptive
grid with 2ℏeffN ∈ ½27; 216� so that all physical observables
are well converged. The wave function is evolved by
switching between representations back and forth and
applying the Floquet operator F̂ ¼ e−ip̂

2=2ℏeffe−iK cosðx̂Þ=ℏeff
in parts. Then the correlators are calculated in the
Schrödinger picture.
The exponential growth of CðtÞ lasts between the time td

and the Ehrenfest time tE [3,14]. To achieve a hierarchical
separation between td and tE (ðtE=tdÞ ≫ 1) for the QKR,
we have to tune both K and ℏeff . The estimates of td ∼
½lnðK=2Þ�−1 and tE ∼ f½j lnℏeff j�=½lnðK=2Þ�g at K > 4
guide our choice of parameters to achieve this separation.
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The smallest ℏeff within the scope of our numerics is
ℏeff ¼ 2−14. For this value of ℏeff , the Ehrenfest time is in
the range 7≲ tE ≲ 17 kicks for the range of kicking
strength 0.5 ≤ K ≤ 10. By K ¼ 1000, tE shrinks down
to three kicks, but, at these values of K, it appears to be
enough to extract a well-averaged exponent. For the above-
mentioned parameter regimes, we numerically observe the
exponential growth of CðtÞ at early times (t < tE) as shown
in Fig. 1, upper panel. Figure 1 also shows that tE decreases
upon increasing the kicking strength K for fixed ℏeff . In
contrast to CðtÞ, the two-point correlator BðtÞ saturates at
time t ∼ 2 kicks (Fig. 1, lower panel).
Equipped with the early-time behavior of CðtÞ, we are in

a position to extract the rate of its exponential growth, i.e.,
obtain the CGR from the quantum calculation. We carry out
a four-pronged comparison between the CGR from the
quantum calculation of CðtÞ, the CGR from the classical
calculation of CclðtÞ, the numerically obtained LE for the
KR, and analytical estimates (5) of the LE from Chirikov’s
standard map analysis [24]. Chirikov’s analytical formula
reads

λ ≈
1

2π

Z
π

−π
dx lnLðxÞ; ð5Þ

where

LðxÞ ¼
�����1þ kðxÞ

2
þ sgn½kðxÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðxÞ

�
1þ kðxÞ

4

�s ����� ð6Þ

and kðxÞ ¼ K cos x. The simplified expression λ ≈ lnðK=2Þ
valid at large K is obtained by substituting LðxÞ ≈ jkðxÞj
into Eq. (5) [24,34].

In Fig. 2, we compare the exponents obtained in four
ways listed above. In order to extract the exponents from
CðtÞ, we determine the times, after which the exponential
growth starts slowing down, and fit CðtÞ from t ¼ 1 up to
these times to the function ae2λfitðt−1Þ to find the parameter
λfit [Cð0Þ ¼ 0, so we omit t ¼ 0]. Numerical calculations of
the classical LE and of the classical CGR [i.e., the growth
rate of CclðtÞ] are performed using the map tangent to the
standard map—this standard procedure is outlined in
Supplemental Material [34]. Notice that the exponents
extracted from CðtÞ (quantum CGR) and from CclðtÞ
(classical CGR) are in excellent agreement for all values
of K. Both classical and quantum CGRs significantly
exceed the LE at K < Kcr. This indicates that the CGR
may not be a reliable tool for discriminating between
classically regular and chaotic dynamics in a global sense,
but it can be employed to detect the existence of local
disconnected chaotic islands more efficiently than the LE.
As expected, numerically calculated values and analytical
estimates of the classical LE agree with each other for
K ≳ 3. At large K, the difference between the CGR and LE
becomes nearly constant ≈ ln

ffiffiffi
2

p
. We attribute this dis-

tinction primarily to the difference in the order of averaging
in the CGR and LE.
Now we proceed to consider the deviation of CðtÞ from

its classical counterpart CclðtÞ that manifests sharply at a
time close to tE. The onset of this deviation in the OTOC is
closely related to the weak dynamical localization effects
[19]. In Fig. 3, we plot ln½CðtÞ�=2t as a function of time t in
the log-log scale. This plot is constant [corresponding to
the exponential rise of CðtÞ] at early times. Beyond tE, the
exponential growth slows down to a power-law growth

FIG. 1. The upper panel shows the OTOC CðtÞ vs t in the
semilog scale for various values of the kicking strength (K ¼ 0.5,
2, 3, 6, 10) and ℏeff ¼ 2−14. The lower panel is a plot of the
two-point function BðtÞ vs t at the corresponding parameters
(in the linear scale). Averaging is performed over the Gaussian
wave packet defined in Eq. (4) with p0 ¼ 0 and σ ¼ 4.

FIG. 2. Red circles: Early-time growth rate ofCðtÞ atℏeff ¼ 2−14

(quantumCGR). The rest of the data are classical. Green solid line:
Growth rate ofCclðtÞ (classicalCGR).Blue triangles:LE calculated
numerically. Black dashed line: LE according to the Chirikov
analytical formula (5). The main plot and the inset show the same
data in the lin-log and linear scales, respectively (and in different
ranges). At K ≳ 8, the difference between the CGR and the LE is
constant ≈ ln

ffiffiffi
2

p
. The initial state in CðtÞ is the Gaussian (4) with

p0 ¼ 0 and σ ¼ 4. Fitting details for extracting the CGR fromCðtÞ
and CclðtÞ are given in the main text.
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(nearly quadratic growth around t ∼ 100 kicks). At long
times, the growth of CðtÞ slows down further, but numerics
quantifying this slowdown is out of the scope of the present
Letter. However, we can unambiguously extract the expo-
nent associated with the exponential growth prior to tE.
Note that, in the range of K and ℏeff where the region of the
exponential growth of CðtÞ is present (tE ≥ 3), ~λ does not
depend on ℏeff (see Fig. 3, inset).
Regular-to-chaotic transition in long-time quantum

dynamics.—The classical KR is famous for its transition
from regular motion to chaotic behavior that occurs as
K is increased above K ¼ Kcr ≈ 0.97. The chaotic phase
is characterized by the quasirandom walk in the
angular-momentum space that leads to diffusion in angular
momentum, so that the rotor’s energy averaged over
the phase space grows linearly with time (number of kicks).
On the other hand, at long times the QKR undergoes
dynamical localization (which is closely connected to
Anderson localization in disordered solids [8]), and around
ℏeff ∼ 1, the standard diagnostic—the average energy,
i.e., the one-point correlator—seems insensitive to the
presence or absence of classical chaos [1,4]. Thus a
question arises: Is there a quantum diagnostic that mani-
fests a robust signature of a regular-to-chaotic classical
transition in the purely quantum dynamics even in the
dynamically localized regime (ℏeff ¼ 1, td ≫ tE)?
Remarkably, the two-point correlator [BðtÞ in Eq. (2)]
contains a sharp signature of the classical transition [35].
In particular, we consider BðtÞ averaged over time within
various windows τ:

Bτ ¼
1

τ

Xτ

t¼0

RehpðtÞpð0Þi: ð7Þ

As shown in Fig. 4, this averaged correlator maintains a
sharp steplike structure as a function of K for several orders
of magnitude in τ (we reached as large a window as
τ ¼ 3 × 109, which is many orders of magnitude longer
than any characteristic time scale in the system). This implies
that, at very long times, the quantum system does not lose

FIG. 3. Main plot: ln½CðtÞ�=2t vs t in the log-log scale for
K ¼ 3, 4, 7, 10 (from bottom to top line, respectively) and
ℏeff ¼ 2−14. The flat region at early times quantifies the ex-
ponential growth rate of CðtÞ. This flat region persists up to time
tE, at which the exponential growth slows down to a power-law
growth with a slowly decreasing power. Dotted lines are guides to
the eye: Horizontal lines extend the flat regions, and the sloped
line is shown for a power comparison. Inset: ln½CðtÞ�=2t vs t in
the log-log scale for K ¼ 4 and ℏeff ¼ 2−14; 2−10; 2−6; 2−2 (from
top to bottom line, respectively). The rate of exponential growth
is the same for different values of ℏeff , but tE shrinks when ℏeff
increases.

FIG. 4. Long-time average B̄τ (7) (over various windows τ) of
the two-point correlator BðtÞ as a function of K compared to the
regular fraction of the phase space weighted with the initial
Wigner distribution Pðx; pÞ (scaled). The trend with increasing τ
shows that, at all K ≠ 0, the correlations decay in time, but the
rate of this decay has a steplike dependence on K. At K > Kcr,
the decay is quite fast, while at K < Kcr, it takes B̄τ at least an
exponentially large window to vanish. It is not clear from the data
whether at small K ≠ 0 the averaged correlator eventually goes to
zero at τ → ∞ or is bounded from below. The initial state
corresponding to Pðx; pÞ is the Gaussian (4) with p0 ¼ 0 and
σ ¼ 4.

FIG. 5. Initial Wigner distribution Pðx; pÞ (3D plot) on the top
of the classical Lyapunov exponent (shown in color in the
horizontal plane; see the color bar for numerical values). The
initial state corresponding to Pðx; pÞ is the Gaussian (4) with
p0 ¼ 0 and σ ¼ 4. The Lyapunov exponent is shown for K ¼ 1.
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the information about the classical transition. The plot
supports the following very intuitive statement. The larger
the chaotic fraction of the classical phase space is, the shorter
the correlation-decay time window becomes (for an explicit
demonstration of this behavior, the dependence of Bτ on the
averaging window size τ is given in Fig. S2 in Supplemental
Material [34]). Therefore, we can relateBτ to the regular part
of the phase spaceweighted by the initialWigner distribution
Pðx; pÞ of QKR (see Fig. 5 for an illustration). However, Bτ
keeps decaying with time, while the regular phase-space
fraction is a constant determined by the initial conditions
andK, so a fixedwindow should be chosen for a comparison.
As the ratio of regular to chaotic areas of the phase space
decreases, so does the averagevalue of the correlator over this
window, until it reaches zero at large K, where almost no
regular regions are present.

E. B. R. and V. G. were supported by NSF-DMR
1613029 and the Simons Foundation. S. G. gratefully
acknowledges support by LPS-MPO-CMTC, Microsoft
Station Q. E. B. R. and V. G. are grateful to Shmuel
Fishman for discussions and valuable comments. S. G.
acknowledges valuable discussions with A. G. Abanov and
D. Huse. V. G. is grateful to Chushun Tian and Hui Zhai for
valuable discussions and hospitality at the Institute for
Advanced Study, Tsinghua University, where a part of this
work was completed.

*efimroz@umd.edu
[1] G. Casati, B. Chirikov, F. Izraelev, and J. Ford, in Stochastic

Behavior in Classical and Quantum Hamiltonian Systems,
Lect. Notes Phys. Vol. 93, edited by G. Casati and J. Ford
(Springer, Berlin, 1979), pp. 334–352.

[2] D. L. Shepelyansky, Physica D (Amsterdam) 8, 208
(1983); G. Casati, B. V. Chirikov, I. Guarneri, and D. L.
Shepelyansky, Phys. Rev. Lett. 56, 2437 (1986); T. Dittrich
and R. Graham, Ann. Phys. (N.Y.) 200, 363 (1990).

[3] G. Berman and G. Zaslavsky, Physica A (Amsterdam) 91,
450 (1978); M. Berry, N. Balazs, M. Tabor, and A. Voros,
Ann. Phys. (N.Y.) 122, 26 (1979).

[4] B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky, Sov.
Sci. Rev. Sect. C 2, 209 (1981).

[5] B. V. Chirikov, F. M. Izrailev, and D. L. Shepelyansky,
Physica D (Amsterdam) 33, 77 (1988).

[6] M. V. Berry, Les Houches Lect. Ser. 36, 171 (1983).
[7] F. Haake, M. Kuś, and R. Scharf, Z. Phys. B 65, 381 (1987);

F. Haake, Quantum Signatures of Chaos, 3rd ed. (Springer-
Verlag, Berlin, 2010), Vol. 54.

[8] S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev.
Lett. 49, 509 (1982); D. R. Grempel, S. Fishman, and R. E.
Prange, Phys. Rev. Lett. 49, 833 (1982); R. E. Prange, D. R.
Grempel, and S. Fishman, Phys. Rev. B 29, 6500 (1984).

[9] M. Toda and K. Ikeda, Phys. Lett. A 124, 165 (1987).
[10] F. Haake, H. Wiedemann, and K. Źyczkowski, Ann. Phys.

(N.Y.) 504, 531 (1992).
[11] R. Alicki, D. Makowiec, and W. Miklaszewski, Phys. Rev.

Lett. 77, 838 (1996).

[12] I. L. Aleiner and A. I. Larkin, Phys. Rev. B 54, 14423 (1996);
Phys. Rev. E 55, R1243 (1997); O. Agam, I. Aleiner, and
A. Larkin, Phys. Rev. Lett. 85, 3153 (2000).

[13] A. Kitaev, KITP, http://online.kitp.ucsb.edu/online/
entangled15/kitaev/.

[14] J. Maldacena, S. H. Shenker, and D. Stanford, J. High
Energy Phys. 08 (2016) 106.

[15] A. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 55,
2262 (1969) [Sov. Phys. JETP 28, 1200 (1969)].

[16] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden,
Phys. Rev. A 94, 040302 (2016); B. Swingle, M. D. Lukin,
D. M. Stamper-Kurn, J. E. Moore, and E. A. Demler, arXiv:
1607.01801.

[17] Y. Huang, Y.-L. Zhang, and X. Chen, Ann. Phys. (Berlin),
DOI: 10.1002/andp.201600318 (2016); Y. Chen, arXiv:
1608.02765; B. Swingle and D. Chowdhury, arXiv:
1608.03280; R. Fan, P. Zhang, H. Shen, and H. Zhai,
arXiv:1608.01914.

[18] F. M. Izrailev and D. L. Shepelyansky, Teor. Mat. Fiz. 43,
417 (1980) [Theor. Math. Phys. 43, 553 (1980)].

[19] C. Tian, A. Kamenev, and A. Larkin, Phys. Rev. Lett. 93,
124101 (2004).

[20] W. K.Hensinger, H.Haffner, A.Browaeys,N. R.Heckenberg,
K. Helmerson, C. McKenzie, G. J. Milburn, W. D. Phillips,
S. L. Rolston, H. Rubinsztein-Dunlop, and B. Upcroft, Nature
(London) 412, 52 (2001).

[21] D. A. Steck, W. H. Oskay, and M. G. Raizen, Science 293,
274 (2001).

[22] G. B. Lemos, R. M. Gomes, S. P. Walborn, P. H. S. Ribeiro,
and F. Toscano, Nat. Commun. 3, 1211 (2012).

[23] J. Larson, B. M. Anderson, and A. Altland, Phys. Rev. A 87,
013624 (2013).

[24] B. V. Chirikov, Phys. Rep. 52, 263 (1979).
[25] A. Peres, Phys. Rev. A 30, 1610 (1984).
[26] H. Pastawski, P. Levstein, G. Usaj, J. Raya, and J.

Hirschinger, Physica A (Amsterdam) 283, 166 (2000).
[27] P. Jacquod, P. G. Silvestrov, and C. W. J. Beenakker, Phys.

Rev. E 64, 055203 (2001).
[28] R. A. Jalabert and H. M. Pastawski, Phys. Rev. Lett. 86,

2490 (2001).
[29] F. M. Cucchietti, C. H. Lewenkopf, E. R. Mucciolo, H. M.

Pastawski, and R. O. Vallejos, Phys. Rev. E 65, 046209
(2002).

[30] F. M. Cucchietti, H. M. Pastawski, and D. A. Wisniacki,
Phys. Rev. E 65, 045206 (2002).

[31] S. Chaudhury, A. Smith, B. E. Anderson, S. Ghose, and P. S.
Jessen, Nature (London) 461, 768 (2009).

[32] I. García-Mata and D. A. Wisniacki, J. Phys. A 44, 315101
(2011).

[33] See Fig. S1 in Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.086801 for a com-
parison between CðtÞ and CclðtÞ.

[34] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.086801 for details
on the definition and calculation of the classical Lyapunov
exponent.

[35] In addition, the time dependence of BðtÞ in the interval
t ∈ ½0; tmax� is much more accessible than that of the OTOC
CðtÞ, as their computation complexities scale asOðtmaxÞ and
Oðt2maxÞ, respectively.
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