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We describe charge transport along a polymer chain with a generic theoretical model depending in
principle on tens of parameters, reflecting the chemistry of the material. The charge carrier states are
obtained from a model Hamiltonian that incorporates different types of disorder and electronic structure
(e.g., the difference between homo- and copolymer). The hopping rate between these states is described
with a general rate expression, which contains the rates most used in the literature as special cases. We
demonstrate that the steady state charge mobility in the limit of low charge density and low field ultimately
depends on only two parameters: an effective structural disorder and an effective electron-phonon coupling,
weighted by the size of the monomer. The results support the experimental observation [N. I. Craciun, J.
Wildeman, and P.W.M. Blom, Phys. Rev. Lett. 100, 056601 (2008)] that the mobility in a broad range of
(polymeric) semiconductors follows a universal behavior, insensitive to the chemical detail.
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The charge mobility in the now vast class of semi-
conducting polymers has proven very difficult to rational-
ize. Modest changes in the chemistry cause large variation
in measured mobility and the space of possible parameters
that can be explored (including molecular weight and
processing) defied any attempt at truly predictive modeling.
On the other hand, the essence of charge transport (temper-
ature, field, and charge carrier dependence) can be captured
by fairly simple models depending on just a few parameters
[1–3]. The intriguing experiments of Ref. [4] show that,
for a large number of materials, the low-charge-density
mobility μ obeys a simple temperature dependence
μ ¼ μ0 expð−Ea=kBTÞ, where the parameter μ0 is universal
for all materials and the only material-dependent parameter
is the activation energy Ea (kBT is the thermal energy). It is
certainly surprising that the chemical and morphological
[5] complexity of organic semiconductors can be reduced
to a single effective parameter for each material.
In this work we consider a rather general model that

should mimic the large parameter space encountered in
realistic polymers and study how many distinct effective
parameters actually affect the charge mobility, through a
parameter space exploration. This approach is somewhat
opposite to the most common strategies that start with a
less general model that already contains a limited number
of parameters (as in Gaussian disordered models [3] or
mobility edge models [6] with four and two parameters,
respectively). In particular, we allow (i) for a more general
(and realistic) electronic structure and (ii) for a more
general hopping rate expression.
The main assumptions of this work are that the disorder

in the one-dimensional electronic Hamiltonian determines
the localization of the carrier states and that the electron-
phonon couplings interactions determine the hopping rates

between these states [7,8]. We therefore first describe the
disordered Hamiltonian in terms of a few parameters; then
we introduce the models and parameters for the hopping
rate and finally a model to describe the mobility.
In a realistic model for charge transport the delocalization

of the single electron states must vary with energy because it
was observed from atomistic simulations [9–11] (and
expected from localization theories [12]) that states at the
band edge are considerably more localized than states a few
kBT from the edge. So, rather than assuming a density of
states (DOS) and an independent constant localization length
we generate the one-electron states involved in the transport
by computing the eigenstates of a random electronic
Hamiltonian [13]. This is defined for a polymer chain as

Ĥel
0 ¼

X
n

εnjnihnj þ
X
n

τnjnihnþ 1j þ H:c: ð1Þ

jni represents the transport-relevant orbital of the nth
monomer (site). The site energies εn and the couplings τn
between neighboring sites are set to realistic values and they
include diagonal and off-diagonal disorder, respectively. An
alternating copolymer structure can also be obtained by
assigning different ranges of energies to even and odd sites.
From the diagonalization of Ĥel

0 weobtain thewave functions
jψ0

i i ¼
P

n cnijni and the energiesEi of the electronic states.
Starting from a few realistic parameters (energies, couplings,
and disorder), this model Hamiltonian naturally provides a
detailed energy landscape of electronic states localized by
static disorder (see Fig. 1) and a realistic DOS. To illustrate
the results of this work we consider 14 models of random
Hamiltonian, different for the average (ε0 and τ0) and
standard deviation (σε and στ) of the matrix elements εn
and τn, assumed to be normally distributed. They are
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summarized in Table I and chosen to reproduce the range of
charge mobility observed experimentally (see below).
The next step is to express the rate of hopping between

the eigenstates of Ĥel
0 , a problem that was described in

detail in Ref. [8], with the main physical ideas summarized
here. The transition between localized electronic states is
caused by electron-phonon coupling terms. For an intuitive
picture we can imagine that a displacement from the
equilibrium position along one of these modes k with

energy ℏωI
k linearly couples any two electronic states i and

j with a coupling strength Mij;k. The transition between
states i and j can be therefore induced by mode k, which we
call the inducingmode. Following Ref. [14] we incorporate
the effect of the distance between initial and final states by
parametrizing the coupling as jMij;kj2 ¼ M2

k

P
njcnij2jcnjj2;

i.e., states are coupled more if they overlap more. Without
other electron-phonon coupling terms this transition is only
possible between states whose energy difference is ℏωI

k
because one phonon is always created or destroyed in the
hopping process and the hopping rate would take the
standard form [15]

ki→j ¼
π

ℏ

X
k

jMij;kj2½ðNðℏωI
kÞ þ 1ÞδðΔEij þ ℏωI

kÞ

þ NðℏωI
kÞδðΔEij − ℏωI

kÞ�; ð2Þ
with ΔEij being the electronic energy difference between
the states, the summation running over the inducing modes
k; N is the boson occupation and δ the Dirac delta.
However, transitions between states with larger energy

difference are possible via the exchange of multiple
phonons with the system. These are the phonons associated
with the relaxation of the nuclear geometry following the
transition between states i and j, i.e., in the language of
Marcus theory [16], those associated with the reorganiza-
tion energy λij for the hopping process. We have called
these modes accepting as they can make up for larger
energy difference between initial and final states; they are
also the modes associated with polaronic effects. The
resulting rate is a generalization of Eq. (2) where the
Dirac delta is replaced by a broader function, the Franck-
Condon weighted and temperature dependent density of
states ρFCWT;ijðEÞ,

ki→j ¼
π

ℏ

X
k

jMij;kj2½ðNðℏωI
kÞ þ 1ÞρFCWT;ijðΔEij þ ℏωI

kÞ

þ NðℏωI
kÞρFCWT;ijðΔEij − ℏωI

kÞ�: ð3Þ

The analytical expression for ρFCWT;ijðEÞ is more man-
ageable if one makes the customary assumption that

λij ¼ λðCÞij þ λðQÞ
ij , i.e., that the reorganization energy is the

sum of a classical component due to low frequency modes

λðCÞij ¼ ð1 − fQÞλij, and a quantum component λðQÞ
ij ¼

fQλij, due to one effective mode with energy ℏωA [17],

ρFCWT;ijðΔEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4πλðCÞij kBT

s X
w

PðwÞ
X
w0

jFCij;ww0j2

× exp

�
− ðΔEþ λðCÞij þ ðw0 − wÞℏωAÞ2

4λðCÞij kBT

�
:
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FIG. 1. Electronic energy landscape for the lowest energy
eigenstates of a disordered polymer chain of 1000 monomers
with periodic boundary conditions and parameters of model 5.
Each eigenstate is represented by a horizontal segment centered
on the site where c2ni is maximum, whose length is the localization
length, defined as 2ðhn2i − hni2Þ1=2. The transitions between
eigenstates that contribute most to the steady state mobility are
represented by arrows. They are selected to make up 90% of the
total particle velocity (definition given in Supplemental Material
[18]). One should note the increased delocalization at higher
energy and the importance of delocalized states in promoting
long range displacement of the carrier.

TABLE I. Hamiltonian parameters in eV for different models of
disorder labeled 1–14. ε0 is always 0.0 eV and defines the 0 of
our energy scale.

Disorder
model

Average
coupling τ0

Diagonal
disorder σε

Off-diagonal
disorder σ

1 0.25 0.0 0.05
2 1.0 0.0 0.1
3 0.5 0.0 0.1
4 1.5 0.0 0.1
5 1.0 0.1 0.1
6 1.0 0.1 0.15
7 0.5 0.1 0.1
8 1.5 0.1 0.1
9 1.0 0.2 0.1
10 1.5 0.0 0.15
11 1.0 0.1 0.2
12 1.0 0.2 0.2
13 1.5 0.2 0.2
14a 1.0 0.2 0.2
aWith a 1 eV gap between odd and even sites.
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In Eq. (4), w and w0 are the vibrational quantum numbers
of the accepting mode in the initial and final states,
PðwÞ the Boltzmann population in the initial state, and
FCij;ww0 the Franck-Condon integrals [explicitly given in

Supplemental Material [18] and depending on λðQÞ
ij ]. It was

shown [8] that the rate expression (2) is extremely general
as it can be reduced to Miller-Abrahams [20], Marcus [16],
Marcus-Levich-Jortner [17] or Vukmirovic [15] rates when
the appropriate limits are taken.
The total reorganization energy λij depends on the

delocalization of both states i and j through the relation
λij ¼ λ1ðIPRi þ IPRjÞ−1, where IPRiðjÞ ¼ ðPn jcniðjÞj4Þ−1
is the inverse participation ratio (IPR) of state iðjÞ (a
measure of how many sites share the charge) and λ1 is the
reorganization energy for the removal of a carrier from a
single site. Note that, in the limit λ1 → 0 of hopping
between delocalized states, Eq. (3) becomes identical to
Eq. (2) as expected. The role of the accepting modes is
therefore determined by the material dependent parameters
λ1, ℏωA, and fQ.
Given a set of hopping rates the mobility can be

computed in several ways. Here we use an adaptation of
the method originally proposed in [21] with the detail given
in [7] and Supplemental Material [18], based on evaluating
the steady state solution of the master equation in the limit
of low field and low carrier density (i.e. ignoring inter-
carrier Coulombic interactions [22]). We compare with
experimental data extrapolated to the same limit, while
generalizations, including to nonequilibrium situations,
would be possible within the model but are not considered
here. We ignore the role of interchain hopping, which has
been shown to be correct for polymers with very long
persistence length [23], with means to extend the results to
the general case recently proposed in [13] at the cost of
additional parameters in the model. These corrections could
become more significant if the interchain hopping had
substantially different transport characteristics from the
intrachain one. However, experiments on aligned thin films
indicate no anisotropy of mobility [24] (and activation
energy [25]), supporting the approximation proposed here
in the first instance. To evaluate the mobility one needs to
introduce the distance between monomers d as an addi-
tional model parameter, which we initially set to a value of
the correct order of magnitude, 1 nm, while the role of this
parameters is further discussed below.
To summarize, the model incorporates (i) parameters of

the electronic Hamiltonian that determine DOS and locali-
zation characteristics (τ0, σε, στ), (ii) parameters determin-
ing the local electron-phonon coupling (λ1, ℏωA, fQ),
(iii) parameters determining the nonlocal electron-phonon
coupling (the set of ℏωI

k and Mk), and (iv) the intermo-
nomer distance d. In the remainder of the paper we analyze
their relative importance attempting an answer to the
question in the title.

The role of λ1 on the mobility is virtually negligible on
the μðTÞ curves, as shown in Fig. 2 for the electronic
Hamiltonian models 5 and 12. The result is due to the fact
that polaronic effects are negligible when the transport is
mediated by fairly delocalized states (which have a
negligible reorganization energy), an assumption implicit
in many of the models proposed so far, which is therefore
validated by our more general model. This observation is in
contrast with the extremely important role attributed to λ1 in
works considering the hopping rate between small mole-
cules [26]. The limited importance of polaronic effects
makes completely unimportant also the parameters that
control their detail, i.e. ℏωA and fQ (see also Figs. S3 and
S4 in Supplemental Material [18]). For the remainder of
this work, we have set the relevant parameters to realistic
values: λ1 ¼ 0.45 eV [27], ℏωA ¼ 0.198 eV, fQ ¼ 0.4 [8].
The inducing modes participate in the rate expression (2)

or (3) through the mode frequencies ℏωI
k and coupling

strengths M2
k and there are, in principle, many conceivable

possibilities. However, we show in Fig. 3 that the μðTÞ
curves do not change much if we consider different
combinations of low and high frequency inducing modes,
provided that

P
M2

k is kept constant. In particular, the
differences between the different distributions of ℏωI

k
values are negligible if one excludes the very unphysical
model where there is a single high frequency inducing
mode. The numerical results suggest that one can capture
the variability between chemical systems simply by con-
sidering only one low frequency inducing mode [model
(a) in Fig. 3], and therefore a single parameter M2 (now
dropping the suffix k) that is essentially a measure of how
effectively the nuclear motions mix the electronic states.
The parameterM2 is ultimately just a prefactor multiplying
each rate [see Eq. (2)]. As the mobility obviously scales as
the squared distance between sites d2, the product d2M2

can be taken as one single effective parameter directly
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FIG. 2. Mobility as a function of temperature computed using
different values for the reorganization energy of the single site λ1.
Results are shown for disorder models 5 and 12 (but are similar
for any disorder model). They are computed with model (a) (see
the caption of Fig. 3) for the inducing modes electron-phonon
coupling.
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proportional to the mobility and the only relevant parameter
besides those defining the electronic Hamiltonian in
Eq. (1). To obtain realistic ranges of mobilities with the
choice of d equal to 1 nm, the results are presented with M
set to 2.0 × 10−4 eV. However, the conclusions do not
depend on this pair of choices.
To evaluate the role of the type and magnitude of disorder

we have computed the temperature dependent mobility for
the range of models reported in Table I and reported the
results in Fig. 4. The first key observation is that the μðTÞ
curves are nonintersecting; i.e., the effects of different types
of disorder (diagonal, off-diagonal, and combined), different
intermonomer coupling, and different on-site energy alter-
nation can be combined together into just one effective
parameter that differentiates thevarious systems.As the logμ
vs 1=T plot is well fitted by a straight line, each μðTÞ curve
can be associatedwith an activation energy,which can offer a
natural measure of the combined effect of all types of
disorder. In the infinite temperature limit the mobility
seems to converge to a very limited range of values
(100–4000 cm2 V−1 s−1 with our choice of d2M2).
The results of the model are strikingly similar to the

experimental results reported by Blom et al. [4,28] for a
broad range of chemically different organic semiconductors
and also reported in Fig. 4. All experimental data can be
fitted by an Arrhenius temperature dependence μ ¼
μ0 expð−Ea=kBTÞ at low field and low charge density.
There seems to be a common infinite temperature mobility
μ0 ¼ 30 cm2V−1 s−1 valid for all materials considered. It
was therefore proposed that there is a single material-
specific parameter determining the temperature dependent

mobility in all organic semiconductors. A 1=T dependence
seems to contradict the 1=T2 dependence predicted from
models based on hopping in a Gaussian DOS. It has been
argued that in organic diodes the average charge carrier
density in a device at zero bias exceeds 1 × 1021 m−3 due to
the diffusion of charges from the contacts [4]. The presence
of such a finite carrier density would then cause the
mobility to follow a ln½μ� ∝ 1=T temperature dependence
over the temperature range where J − V measurements are
usually carried out [28]. However, the model calculations
presented here demonstrate that an Arrhenius-like temper-
ature dependence is a fundamental property of transport
along polymer chains.
According to our model, μðTÞ only depends on two

parameters, a combined effect of disorder (which deter-
mines the activation energy) and the weighted strength of
the electron-phonon coupling, d2M2, acting as a prefactor
for our computed mobility. To fully account for the
experimental observation we can speculate that the param-
eter d2M2 is approximately a constant for this class of
materials. The scaling of d and M supports this idea. One
can partition the polymer into nearest neighbor interacting
sites in different ways, e.g., considering a smaller or larger
unit to take as “the monomer,” and this partition defines the
other parameters of the model. According to the definition
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FIG. 3. Mobility as a function of temperature for disorder
models 5 and 12 computed using four different models for the
inducing modes. The inducing mode frequencies ℏωI

k and
coupling strengths M2

k have been set as follows. Model (a),
one low energy mode (6.2 meV); model (b), four modes from low
to intermediate energy (6.2, 12.4, 37.2, 49.6 meV); model (c),
five modes from low to high energy (6.2, 12.4, 37.2, 49.6,
186 meV); model (d), one high energy mode (186 meV). The
values of M2

k have been chosen to be identical for all inducing
modes with strength such that

P
k M

2
k ¼ 4.0 × 10−8 eV2 to

reproduce the experimental range of mobilities.
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FIG. 4. Top: experimental hole mobility vs 1=T for a range of
organic semiconductors, adapted from Ref. [4] and augmented
with additional data points [28]. Bottom: mobility vs 1=T from
various models of chains of 1000 monomers with a variety of
disorder parameters (see Table I), including an alternating
copolymer (model 14). The lines are obtained from a least
squares linear fitting of log μ vs 1000=T.
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of M, the product dM should remain constant in order to
have consistent models with different definitions of the
monomer length, e.g., if we consider larger monomers, the
effect of inducing modes is weaker. As we noted when we
discussed the negligible importance of reorganization
energy, the most effective charge hopping events involve
fairly delocalized states (tens of monomers) and it is
therefore not surprising that the electron-phonon coupling
terms, being averaged over a large portion of the material,
become weakly dependent on the chemical detail for
similar classes of compounds.
In conclusion, we performed a parameter space explora-

tion of a generic charge transport model suitable for
realistic polymers in the limit of low charge density and
electric field. We have found that the temperature depend-
ence of the mobility of conjugated polymers is determined
by just two effective parameters, even though the model
itself depends, in principle, on many tens of parameters.
Remarkably, we find that polaronic effects, very different
from system to system, are irrelevant for the computed
mobility. The model helps explaining the experimental
observation of a universal temperature dependence of the
mobility determined by a single experimental parameter. To
fully account for the experimental observation we have
tentatively speculated that the strength of the mixing
between electronic states due to the inducing modes is
similar across all materials considered.
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