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It is a common knowledge that an effective interaction of a quantum impurity with an electromagnetic field
can be screened by surrounding charge carriers, whethermobile or static. Herewe demonstrate that very strong,
“anomalous” screening can take place in the presence of a neutral, weakly polarizable environment, due to an
exchange of orbital angular momentum between the impurity and the bath. Furthermore, we show that it is
possible to generalize all phenomena related to isolated impurities in an external field to the casewhen amany-
body environment is present, by casting the problem in terms of the angulon quasiparticle. As a result, the
relevant observables such as the effective Rabi frequency, geometric phase, and impurity spatial alignment are
straightforward to evaluate in terms of a single parameter: the angular-momentum-dependent screening factor.
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It is quite intuitive that once an impurity is immersed in a
dielectric medium, its response to an external electromag-
netic field is reduced—or “screened”—due to redistribution
of charges in the dielectric [1]. This classical description
implies that if the medium is neutral and only weakly
polarizable, it induces a negligible change in impurity-light
interactions, if any at all. Physics becomes more compli-
cated, however, when quantum effects come into play.
There, even the vacuum can behave as a medium with a
finite dielectric permittivity due to virtual pair fluctuations,
with nonlinear effects taking place in the presence of strong
electric fields [2]. These quantum fluctuations can also
screen the impurity charge in a medium, as has been shown,
e.g., for graphene [3]. Furthermore, due to the electron-
phonon interactions, the Coulomb potential between two
charged particles is screened in various settings, such as the
jellium model [4]. Another important example is the Kondo
screening, where the dipole moments of magnetic impu-
rities are screened by conduction electrons [5,6].
Here we uncover another type of screening—that due

to exchange of orbital angular momentum between the
impurity and the surrounding quantum many-body bath.
While such a screening takes place even for a bath “blind”
to an electromagnetic field, it results in an anomalous
decrease of the impurity susceptibility parameters, such as
the effective dipole moment and polarizability. We start
from the most general Hamiltonian describing an impurity
interacting with a time-dependent electromagnetic (EM)
field, which in the electric dipole approximation is given by

Ĥimp-emðtÞ ¼ Ĥimp − d̂ · EðtÞ: ð1Þ

Here, Ĥimp is the Hamiltonian of the impurity, d̂ is its
corresponding electric dipole operator, and EðtÞ is the
electric field component of the EM field. The simplest
Hamiltonian for an impurity possessing orbital angular
momentum is given by Ĥimp ¼ BL̂2, where L̂ is the angular

momentum operator. The constant B depends on the
particular system under investigation. For example, for
the kinetic energy of a linear-rotor molecule, B ¼ 1=ð2IÞ is
the rotational constant with I the moment of inertia [7] (we
use the units of ℏ≡ 1 hereafter). For t2g-electron orbitals
in solids, B ¼ −J =2, where J parametrizes Hund’s
exchange coupling [8]. Further degrees of freedom, such
as electronic and nuclear spins, electron hopping, or a
crystal field, will result in additional terms in Ĥimp. For
some other systems, such as highly excited Rydberg
electrons [9], or complex polyatomic molecules [10], the
impurity Hamiltonian might assume an overall different
form. However, since the effects discussed in this paper
originate from the orbital angular momentum transfer, the
qualitative picture is not expected to change substantially.
In the presence of a neutral many-particle environment,

the full Hamiltonian of the system is given by

ĤðtÞ ¼ Ĥimp-emðtÞ þ Ĥbath þ Ĥimp-bath: ð2Þ

Note that we assume the environment to be weakly polar-
izable, and therefore neglect its coupling to an external
field. However, the impurity-bath interactions (of electro-
static, induction, and dispersion type) are still present [11].
We consider a neutral bosonic bath as described by the
Hamiltonian, Ĥbath ¼

P
kλμωkb̂

†
kλμb̂kλμ, with ωk the

dispersion relation. Here b̂†kλμ and b̂kλμ are the bosonic
creation and annihilation operators,

P
k ≡

R
dk, and k, λ,

and μ label the corresponding quantum numbers of linear
momentum, angular momentum, and its projection on the z
axis, respectively [12–14]. Such a bath can be represented,
e.g., by lattice phonons [15], Bogoliubov excitations in a
Bose-Einstein Condensate (BEC) [16], or phonons, rotons,
and ripplons in superfluid helium [17]. For simplicity, in
what follows we will refer to the bosonic excitations as
“phonons.” As it has been shown in Refs [12–14], the
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interaction of an impurity carrying orbital angular momen-
tum with a bosonic bath can be described as

Ĥimp-bath ¼
X
kλμ

UλðkÞ½Y�
λμðθ̂; ϕ̂Þb̂†kλμ þ Yλμðθ̂; ϕ̂Þb̂kλμ�; ð3Þ

whereUλðkÞ is the angular-momentum-dependent coupling
strength. As the interaction depends on the angle operators
θ̂; ϕ̂ of the impurity via the spherical harmonics Yλμðθ̂; ϕ̂Þ,
the impurity in the angular state jjmi can undergo a
transition to jj0m0i by absorption or emission of a phonon
with the quantum numbers k, λ, μ.
In principle, it is extremely challenging to obtain exact

time-dependent solutions to the full Hamiltonian of Eq. (2).
The problem can be simplified tremendously, however, if
one approaches it from the perspective of quasiparticles.
Namely, it has been recently shown that impurities whose
orbital angular momentum is coupled to a many-body bath
form the angulon quasiparticles [12–14,18–20]. This novel
kind of quasiparticles can be thought of as a non-Abelian
counterpart of polarons [21], as it represents a quantum
rotor dressed by a many-body bosonic field. Furthermore it
was demonstrated that the predictions of the angulon theory
are in good agreement with experiment for molecules in
superfluid helium nanodroplets [22,23].
Accordingly, the full Hamiltonian of Eq. (2) can be

rewritten as ĤðtÞ ¼ ĤA − d̂ · EðtÞ ⊗ 1, where ĤA ¼
Ĥimp þ Ĥbath þ Ĥimp-bath is the angulon Hamiltonian, and
the identity operator indicates that only the impurity interacts
with the electric field. Taking only single-phonon excitations
into account [24], the angulon eigenstate jALMi can be
approximated by the following variational ansatz [12]:

jALMi ¼
ffiffiffiffiffiffi
ZL

p
j0ijLMi þ

X
kλμjm

βLkλjC
LM
jm;λμb̂

†
kλμj0ijjmi; ð4Þ

with L and M being the total angular momentum and its
projection on the laboratory-frame z axis, respectively.
Here, j0i represents the vacuum of bath excitations,
CLM
jm;λμ are the Clebsch-Gordan coefficients [28], and

ffiffiffiffiffiffi
ZL

p
and βLkλj are the variational parameters. Equation (4) is
straightforward to understand in the quasiparticle language:
the first term corresponds to a bare impurity, with ZL being
the quasiparticle weight, while the second term describes the
field of many-particle excitations due to the impurity-bath
interactions.
We start with the first-order expansion of the electric dipole

operator, d̂ · EðtÞ ≈ μ̂0 · EðtÞ (higher-order terms will be
discussed below). Here μ̂0 is the permanent dipole moment
operator of the impurity [29]. In the angulon basis, the state
vector can be written as jψðtÞi ¼ P

LMKLMðtÞjALMi. The
evolution of the corresponding amplitudes, KLMðtÞ, is given
by the Schrödinger equation,

i
dKLM

dt
¼ −

ffiffiffiffiffiffi
4π

3

r X
L0M0q

KL0M0EqðtÞjμ0j

× hL0M0jYnqðθ̂; ϕ̂ÞjLMifL;L0
n þ εLKLM; ð5Þ

where εL ¼ hALMjĤAjALMi, and Eq with q ¼ f0;�1g give
the spherical components ofE. In Eq. (5)we separated out the
factor,

fL;L
0

n ¼
ffiffiffiffiffiffiffiffiffi
ZL0 �

p ffiffiffiffiffiffi
ZL

p
þ
�
L0 n L

0 0 0

�−1X
kλjj0

βL
0�

kλj0β
L
kλj

×

�
j λ L

L0 n j0

�
ð−1ÞLþL0þλþj0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j0 þ 1

p
Cj0
j00n0;

ð6Þ
which wewill refer to as the “angular-momentum-dependent
screening factor.” The round and curly brackets in Eq. (6)
denote the Wigner 3j, and 6j symbols, respectively [28]. We
see that the same selection rules that applied to the angular
momentum of the bare impurity, now apply to the total
angular momentum of the angulon, L. Therefore, Eq (5)
represents the Schrödinger equation for a single particle—the
angulon—interactingwith anEMfield. Theonly difference is
that now the effective dipole moment, fL;L

0
n jμ0j, depends on

the angular state of the impurity via the screening factor fL;L
0

n ,
in analogy to the energy-dependent susceptibility of QED
vacuum [30].
In the limit of βLkλj → 0, ZL → 1, and hence fL;L

0
n → 1,

Eq. (5) reduces to the usual Schrödinger equation of an
isolated impurity in an EM field. However, for nonvanishing
βLkλj, the screening factor jfL;L

0
n j < 1 [31]: effective impurity-

field interactions are proportional to the quasiparticle weight
ZL, which decreases if bath excitations are created.
In order to illustrate the effect of the bath on impurity-

field interactions, we evaluate several observables, such as
the effective Rabi frequency, geometric phase, and spatial
alignment of the impurity axes. Without loss of generality,
we consider a bath with the Bogoliubov dispersion relation,
ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵkðϵk þ 2gbbnÞ

p
[16], where ϵk ¼ k2=ð2mÞ with m

the boson mass and n the boson particle density, and
gbb ¼ 4πabb=m where we set the boson-boson scattering
length to abb ¼ 3.3=

ffiffiffiffiffiffiffi
mB

p
. We choose the impurity-

boson interaction as that derived for an ultracold
molecule interacting with a dilute BEC, UλðkÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8nk2ϵk=½ωkð2λþ1Þ�

p R
drr2vλðrÞjλðkrÞ, where jλðkrÞ is

the spherical Bessel function [12]. We model the coupling
using Gaussian functions, vλðrÞ ¼ uλð2πÞ3=2e−r2=ð2r2λÞ, and
focus on the leading λ orders, setting the parameters to
u0 ¼ 1.75u1 ¼ 218B, and r0 ¼ r1 ¼ 1.5=

ffiffiffiffiffiffiffi
mB

p
. Taking

into account higher-order couplings with λ ≥ 2 will alter
the selection rules on the boson-impurity scattering, how-
ever, is not expected to change the results qualitatively.
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We study the behavior of the system as a function of the
dimensionless bath density, ~n≡ nðmBÞ−3=2, and for the
sake of simplicity, we consider a linearly polarized EM
field along the z direction EðtÞ ¼ EðtÞ cosðωtÞ with the
field frequency ω, and the field envelope EðtÞ. A linearly
polarized field preserves cylindrical symmetry and renders
M a good quantum number. Here we focus on the M ¼ 0
manifold and omit the index M. We solve the Schrödinger
equation (5) numerically taking into account terms up to
Lmax ¼ 50 with the initial condition KLðtiÞ ¼ δLLi

.
In Fig. 1(a) we present the screening factor for different

angular-momentum states, as a function of the bath density.
While for very low and very high densities the screening
factor does not vary with ~n and L, L0 substantially, there
occur pronounced minima in the screening factor at
intermediate densities. The latter correspond to the insta-
bilities accompanied by the transfer of angular momentum
from the impurity to the bath [12]. Such a drastic decrease
in the screening factor is the manifestation of the anoma-
lous screening.
Let us now evaluate the total absorption of an impurity

inside a neutral bath, as given by T L ¼ 1 − jhALjψðtfÞij2
with jψðtiÞi ¼ jALi. Figure 1(b) shows T L as a function of
the applied field energy, μ0E0, and the EM frequency, ω,
with and without a bath. The applied EM pulse is given by
EðtÞ ¼ E0 exp ½−4 lnð2Þt2=τ2�, with the FWHM pulse dura-
tion τ ¼ 6π=B and the field amplitude E0. Close to the
resonance, the dynamics is dominated by Rabi oscillations,
which correspond to peaks in absorption (dark shade in the
figure). Thus, the peaks at ω=B ¼ 2, 3, and 4 correspond to
the single-photon L ¼ 0 → L ¼ 1 transition, two-photon
L ¼ 0 → L ¼ 2 transition, and three-photon L ¼ 0 → L ¼
3 transition, respectively. In the bottom panel of Fig. 1(b),
we see the result of anomalous screening—a drastic
decrease of the Rabi frequency. Accordingly, we can

identify the effective Rabi frequency through the screening
factor f: ΩA

L;L0 ¼fL;L
0

1 μ0E0hLjcosðθ̂ÞjL0i¼fL;L
0

1 ΩL;L0 . For
instance, for the L ¼ 0 → L ¼ 1 transition the Rabi fre-
quency is given by ΩA

0;1 ¼ μ0E0f
0;1
1 =

ffiffiffi
3

p
. At the instability

density of Ln½ ~n� ¼ −4.5, we obtain f0;11 ≈ 1=4, which is
consistent with the plots shown in Fig 1(b). A similar
behavior is observed for the total absorption for the
impurity prepared in the third excited state L ¼ 3; see
Fig. 1(c). We note that in the regime of weak impurity-bath
coupling, the energy splittings between the stable angulon
states are close to the ones of an isolated impurity [12]. As a
result, the resonant frequencies for electromagnetic absorp-
tion are approximately the same.
Another phenomenon we consider is the geometric phase

accumulated during a cyclic evolution of the impurity
[32,33]. Following Aharanov and Anandan, any cyclic
evolution may result in a geometric phase as given by
γ ¼ ϕþ R

τ
0 dthψðtÞjℋ̂ðtÞjψðtÞi, where the second term

refers to the dynamical phase. Let us start from one of
the angulon eigenstates, jψLð0Þi ¼ jALi, and let it evolve
during a time interval τ into the same state up to a
total phase, jψLðτÞi ¼ expðiϕÞjALi. The following param-
eters ω ¼ 20B, EðtÞ ¼ E0 sin2ðπt=τÞ, τ ¼ 30=B, and E0 ¼
11B bring the system back to the initial state after the time τ
for all densities. In Fig. 1(d), we show the resulting
geometric phase for the L ¼ 1 angulon state as a function
of the bath density.
In order to get more insight into how a many-body

environment influences the geometric phase, we consider a
system of two levels, L ¼ 0 and L ¼ 1, in a constant electric
field. The corresponding Hamiltonian can be written as
ℋ̂ ¼ σ0R0 þ σ · R, with some R0 andR, where σ0 and σ are
the identity matrix and the vector of Pauli matrices,
respectively. The time-evolution operator is given by

FIG. 1. (a) The screening factor fL;L
0

1 for selected values of L, L0. (b) Total absorption of a free ground-state impurity (top), compared
to a screened one, at bath density Ln½ ~n� ¼ −4.5 (bottom). (c) Total absorption of a free impurity in the L ¼ 3 state (top), compared to a
screened one, at bath density Ln½ ~n� ¼ −1.0 (bottom). (d) Geometric phase of the screened impurity (solid line) compared to that of a free
impurity (dashed line), as a function of bath density. See text.
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Ûðt; 0Þ ¼ expð−iR0tÞ½σ0 cosðRtÞ − i sinðRtÞσ · R=R�; ð7Þ

with R≡ jRj. The state evolution is cyclic under the
period of τ ¼ π=R up to the total phase ϕ ¼
πð1 − R0=RÞ. The dynamical phase, on the other hand, is
given by −

R
τ
0 dthψLðtÞjℋ̂jψLðtÞi ¼ −πðR0 � RzÞ=R,

which leads to

γ ¼ π½1� ðε0 − ε1Þððε0 − ε1Þ2 þ ð2f0;11 μ0E0=
ffiffiffi
3

p
Þ2Þ−1=2�:

ð8Þ
As for the Rabi frequency, the neutral bath affects the
geometric phase through the screening factor f. As a result,
the geometric phase becomes density dependent as shown in
Fig. 1(d). Note that γ can assume both smaller and larger
values compared to the isolated impurity case, and vanishes
identically for certain densities.
As a final example we consider effects of a neutral bath

on the time evolution of the impurity spatial alignment due
to a far-off-resonant laser pulse. Such a setting was realized,
e.g., in recent experiments on adiabatic [34] and non-
adiabatic [23,35,36] molecular alignment in superfluid
helium nanodroplets. Since in the case of intense off-
resonant laser fields the second-order effects are important,
we expand the dipole-field interaction as d̂ · EðtÞ ≈
μ0EðtÞ cosðθ̂Þ þ ½Δαcos2ðθ̂Þ þ α⊥�E2ðtÞ=2, where Δα ¼
α∥ − α⊥ with α∥ and α⊥ being the polarizabilities in the
direction parallel and perpendicular to the molecular axis.
Furthermore, far from any resonances, the electric field can
be averaged over the laser period so that the Hamiltonian is
written in terms of the field envelope [37–39],

ĤðtÞ ¼ ĤA − ΔαE2ðtÞ ~Y2;0ðθ̂Þ=4 ⊗ 1; ð9Þ

where ~Y2;0ðθ̂Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π=45

p
Y2;0ðθ̂Þ, and the constant energy

shifts are omitted. Similar to the permanent dipole case, the
many-body Hamiltonian (9) can be reduced to the single-
particle Hamiltonian by introducing the screening factor
fL;L

0
2 . The density dependence of the screening factor f2 is

shown in Fig. 2(a).
Since an intense laser field aligns the molecule along the

direction of maximum polarizability [40,41], it is conven-
ient to quantify the degree of alignment using the alignment
cosine, hcos2ðθ̂Þi≡ hψðtÞj cos2ðθ̂Þ ⊗ 1jψðtÞi. If the pulse
duration τ is long compared to the rotational period,
Trot ¼ π=B, the alignment process is adiabatic. In such a
case, the alignment cosine follows the electric field envelope.
As an example, we consider a CS2 molecule, whose
parameters are given by Δα ¼ 67.5, B ¼ 4.97 × 10−7 a:u.
In Fig. 2(b) we compare the time evolution of hcos2ðθ̂Þiwith
the initial state L ¼ 0 for an adiabatic alignment of CS2
inside an environment of various densities to that of an
isolated CS2. We used the following parameters of the EM
field: τ¼600 ps, the envelope EðtÞ¼E0exp½−4 lnð2Þt2=τ2�,

and intensity I ¼ 1 × 1010 W=cm2. One can see that the
screening manifests itself though a substantial reduction of
the peak alignment. The magnitude of the screening depends
on the f2 factor and can be derived analytically considering
only two states, L ¼ 0 and L ¼ 2,

hcos2ðθ̂Þimax¼
1

3
þ
�
4f2;22

21
sin2ðδ=2Þþ2f0;22

3
ffiffiffi
5

p sinðδÞ
�
; ð10Þ

where tanðδÞ ¼ f0;22 ΔαE2
0=½

ffiffiffiffiffi
45

p ðε2 − ε0 − f2;22 ΔαE2
0=21Þ�.

As the screening factor f0;22 decreases, the peak alignment
decreases as well, as is the case for the density of
Ln½ ~n� ¼ −3; see Figs. 2(a) and 2(b).
If τ ≪ Trot, the impurity-field interaction is nonadiabatic,

which results in the revivals in the alignment cosine [42,43].
Note that in order for the pulse to be adiabatic with respect
to the angulon formation, τ has to be long compared to the
time scale of phonons in helium, τph. The latter is given by

FIG. 2. (a) The screening factor fL;L
0

2 for selected values of L,
L0. (b) Adiabatic alignment of a free CS2 molecule in a bath of
selected densities, as illustrated by the time evolution of the
alignment cosine. (c) Same as (b), for the case of nonadiabatic
alignment. See text.
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τph ¼ μ−1, where μ ∼ kB × 7.2 K is the chemical potential of
superfluid 4He [44,45]. This results in time scales τph ∼ 1 ps
for the typical response timescale of phonons. Accordingly,
we use a pulse with τ ¼ 4 ps and I ¼ 1 × 1011 W=cm2.
Figure 2(c) shows the resulting time dependence of hcos2ðθ̂Þi
for the case of L ¼ 0. While the frequency of the revivals in
thepresence of a bath is similar to that of an isolatedmolecule,
the maximum alignment scales with the screening factor f2.
Thus, we have shown that a neutral weakly polarizable

environment can induce a drastic screening of the impurity-
field interactions due to the angular momentum transfer
between the impurity and the bath.Wedeveloped a transparent
analytic model based on the angulon quasiparticle, where all
of the effects due to the bath are encapsulated in a single
parameter—the screening factor f. Such a quasiparticle-based
approach allows us to extend the techniques developed for
isolated atoms, molecules, and solid-state defects in external
fields to the casewhen amany-particle environment is present.
The predicted effects should be measurable with the state-of-
the-art techniques used in quantum impurity experiments.
For instance, the geometric phase can be measured using the
impurity interference techniques [46–49], while experiments
onmolecules rotating in superfluid helium nanodroplets allow
us to perform spectroscopic and alignment measurements
[23,34–36,45,50]. The presented formalism can be general-
ized to the case of a fermionic environment, such as an
ultracold degenerate Fermi gas [51] or 3He [16,52], as well as
to Bose-Fermi mixtures [53], which would further extend its
domain of applicability.
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