
Cavity-Assisted Single-Mode and Two-Mode Spin-Squeezed States
via Phase-Locked Atom-Photon Coupling

Yong-Chang Zhang,1,2 Xiang-Fa Zhou,1,2,* Xingxiang Zhou,1,2 Guang-Can Guo,1,2 and Zheng-Wei Zhou1,2,†
1Key Laboratory of Quantum Information, Chinese Academy of Sciences,
University of Science and Technology of China, Hefei 230026, China

2Synergetic Innovation Center of Quantum Information and Quantum Physics,
University of Science and Technology of China, Hefei 230026, China

(Received 30 August 2016; published 24 February 2017)

We propose a scheme to realize the two-axis countertwisting spin-squeezingHamiltonian inside an optical
cavity with the aid of phase-locked atom-photon coupling. By careful analysis and extensive simulation, we
demonstrate that our scheme is robust against dissipation caused by cavity loss and atomic spontaneous
emission, and it can achieve significantly higher squeezing than one-axis twisting. We further show how our
idea can be extended to generate two-mode spin-squeezed states in two coupled cavities. Because of its easy
implementation and high tunability, our scheme is experimentally realizable with current technologies.
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Introduction.—Since the early work of Kitagawa and
Ueda [1] and others [2,3], spin-squeezed states have
attracted much interest due to their close relations with
quantum information processing [4–9] and precision met-
rology [1,2,10–12]. In the original work of Kitagawa and
Ueda [1], two mechanisms, namely, one-axis twisting
(OAT) and two-axis countertwisting (TACT), were pro-
posed to generate spin-squeezed states. Preparation of such
novel states has been the subject of many studies in various
physical setups, such as feedback systems [13], Bose-
Einstein condensates (BECs) [8,12,14–21], Rydberg lattice
clocks [22], and atomic systems in cavities [23–29]. To the
best of our knowledge, all experiments to date have focused
on OAT spin squeezing, whereas TACT spin-squeezed
states have not yet been realized in experiments.
In quantum metrology, it is theoretically demonstrated

[1,2] that TACT states are fundamentally superior to OAT
states because measurement systems based on them can
approach the Heisenberg limit in which the precision of the
measurement scales with 1=N, with N being the number
of particles in the system. By contrast, the precision allowed
by OAT states scales with 1=N2=3. Hence, it remains a very
important task to generate and exploit TACT spin-squeezed
states using methods and techniques within the reach of
current technologies. There have been a few theoretical
proposals, such as converting OAT into effective TACT
[17–19], implementing TACT with molecular states [6,20],
utilizing ultracold atoms in two cavities [28], employing
feedback in the measurement system [13], and using toroidal
BECs [21]. Nevertheless, because of the demanding exper-
imental requirements of these schemes, it remains experi-
mentally challenging to generate TACT spin-squeezed states.
In this Letter, we propose a scheme to realize a TACT

Hamiltonian in a cavity-atom system. Our proposal relies on
phase-locked coupling between atoms and photons only.

Since both the atoms and the cavity modes are only virtually
excited, it has the important advantage of being largely
immune to atomic and cavity dissipation. Furthermore, our
scheme can be easily generalized to generate two-mode spin-
squeezed (TMSS) states by coupling two cavities, which can
be used to estimate two observables simultaneously even
when they do not commute. They are widely used in many
quantum applications, such as entanglement demonstration
[30,31], quantum teleportation [32], and quantummetrology
[33]. Considering the rapid advances in cavity technology,
including the availability of high-finesse optical cavities and
strong cavity-atom coupling [34–40], our proposal can be
realized with no fundamental difficulty.
Effective Hamiltonian.—We start by considering an

ensemble of N four-level atoms in an optical cavity coupled
to a single cavity mode and external laser fields. The
explicit level configuration is illustrated in Fig. 1, where g1
and g2 are the cavity-atom coupling strengths driving the
atomic transitions j1i ↔ j3i and j2i ↔ j4i and ~Ω1;2 and
Ω1;2 are Rabi frequencies of the external laser fields, and
Δ1;2, δ1;2, and γ1;2 are detunings. To realize the desired

FIG. 1. Atomic energy levels and transitions between them.
The complex Rabi frequencies ~Ω1e−iφ, ~Ω2eiφ;Ω1e−i½φ−ðπ=2Þ�, and
Ω2ei½φ−ðπ=2Þ� are associated with four phase-locked driving lasers.
g1;2 is the coupling strength between the atom and the cavity
mode. Δ1;2, δ1;2, and γ1;2 are detunings.
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TACT interaction, we also assume a fixed relative phase of
π=2 (−π=2) between Ω1 (Ω2) and ~Ω1 ( ~Ω2) [41,42]. The
Hamiltonian reads

H¼
XN
j¼1

�
eiφ

2
½ ~Ω2e−iðΔ2þδ2Þt− iΩ2e−iðΔ2−γ2Þt�j1ijh4j

þ e−iφ

2
½ ~Ω1e−iðΔ1þδ1Þtþ iΩ1e−iðΔ1−γ1Þt�j2ijh3j

þ g1j1ijh3ja†e−iΔ1tþ g2j2ijh4ja†e−iΔ2tþH:c:

�
; ð1Þ

where a† (a) is the creation (annihilation) operator of the
cavity mode, �φ and �½φ − ðπ=2Þ� are the phases of the
external laser fields, and the detunings are defined as
Δ1ð2Þ¼ω3ð4Þ−ω1ð2Þ−ωc, γ1ð2Þ¼ω2ð1Þ−ω1ð2Þ−ωcþωL1ðL2Þ,
and δ1ð2Þ ¼ ω1ð2Þ − ω2ð1Þ þ ωc − ω ~L1ð ~L2Þ, with ωL1;2; ~L1;2

and
ωc being the frequencies of the driving lasers and the cavity
mode. The rotating wave approximation was used to derive
the Hamiltonian in Eq. (1) in the rotating frame defined
by H0 ¼

P
N
j¼1

P
4
k¼1 ωkjkijhkj þ ωcða†aþ 1

2
Þ. To sim-

plify our discussion, here and in the following, we assume
δ ¼ δ1 ¼ δ2, γ ¼ γ1 ¼ γ2, and set φ ¼ 0. For large
detunings with

jΔ1;2j; jΔ1;2 þ δj; jΔ1;2 − γj ≫ jg1;2j; jΩ1;2j; j ~Ω1;2j; ð2Þ

all of the high energy levels can be adiabatically eliminated,
leading to the following effective Hamiltonian involving
only the two lowest states and the cavity mode:

H0 ¼ fcz − c0z sin½ðδþ γÞt�gSz
−
hA
2
Sxa†eiδt þ

B
2
Sya†e−iγt þ H:c:

i
: ð3Þ

Here, the collective atomic spin operators are defined as
Sz¼1

2

P
N
j¼1ðj1ijh1j−j2ijh2jÞ, Sx¼1

2

P
N
j¼1ðj1ijh2jþj2ijh1jÞ,

and Sy ¼ i
2

P
N
j¼1ðj2ijh1j − j1ijh2jÞ. The explicit expres-

sions for the coefficients cz, c0z, A, and B can be found in the
Supplemental Material [43].
If we further assume that the effective couplings in

Eq. (3) are much weaker than the detunings, i.e.,

jδj; jγj; jδ� γj ≫ NjAj=4; NjBj=4; ð4Þ

the cavity mode is virtually excited only and can be
adiabatically eliminated, too. We then obtain the following
effective Hamiltonian:

Heff ¼ czSz − cxS2x þ cyS2y; ð5Þ

with cx ¼ ðA2=4δÞ and cy ¼ ðB2=4γÞ [43]. This is the
celebrated Lipkin-Meshkov-Glick (LMG) model [2]. When
cz ¼ 0 and cx ¼ cy ¼ χ, it reduces to the standard TACT

Hamiltonian in Ref. [1]. Experimentally, all coefficients
cx;y;z can be controlled by adjusting the Rabi frequencies of
the driving lasers. If necessary, cz can also be compensated
for by an external magnetic field [47].
To characterize the degree of spin squeezing, we intro-

duce the parameter [1,2]

ξ2 ¼ ðΔS⊥Þ2min

S=2
: ð6Þ

Here, S ¼ N=2, with S ¼ ðSx; Sy; SzÞ being the total
spin operator, and ðΔS⊥Þ2min ¼ ðhS2⊥i − hS⊥i2Þmin is the
minimum spin fluctuation in the direction perpendicular
to the average spin hSi. A state is a spin coherent state
(spin-squeezed state) if ξ2 ¼ 1 (ξ2 < 1) [1].
Numerical simulation.—In order to check the validity of

our approximations, we numerically simulate the system
evolution under the effective Hamiltonian in Eq. (5) and the
original Hamiltonian in Eq. (1) and compare the results.
To fulfill the approximations, the explicit parameters
are chosen as follows: g1;2¼Ω1;2¼ ~Ω1;2¼Ω¼5×107 s−1,
Δ1;2¼Δ¼109 s−1, δ1;2¼108 s−1, and γ1;2¼1.26×108 s−1.
With these parameters, the effective model reduces to a
standard TACT Hamiltonian with cz ¼ 0 and χ ¼
5.69 × 104 s−1. We also assume that, initially, the cavity
is in the vacuum state and the atoms are all in the state j1i,
which corresponds to a coherent spin state in the z
direction. Shown in Figs. 2(a) and 2(b) are the time
dependences of the squeezing parameter ξ2 and the overlap
function F ¼ jhψð0ÞjψðtÞij, with the initial state of the
system in the ideal case without cavity leakage (κ ¼ 0) and
atomic spontaneous decay (γd ¼ 0). The state evolution
dictated by the effective TACT Hamiltonian in Eq. (5)
agrees very well with that calculated directly from the
original full Hamiltonian in Eq. (1), strong evidence that all
approximations employed in our derivation are reasonable.

(a) (c)

(b) (d)

FIG. 2. (a), (b) Time evolution of ξ2 and F withH in Eq. (1) and
Heff in Eq. (5) without dissipation for N ¼ 6, 8, and 10. (c), (d)
Time evolution of ξ2 and F under the original Hamiltonian H in
Eq. (1) with dissipation for N ¼ 8.
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We note in Fig. 3(b) that, although the maximum
achievable squeezing (i.e., the minimum ξ2) increases with
the number of atoms N [2,17], the time the squeezing takes
to reach its maximum increases withN, too. This is because
the nonlinear squeezing coefficients cxðcyÞ in Eq. (5) must
decrease with N in order to maintain the virtual excitation
of the system as dictated by Eq. (4). Though virtual
excitation reduces the influence of the dissipation, its
eventual effect on squeezing must be carefully evaluated
because of the longer squeezing time required to reach the
optimal squeezing. For this purpose, we numerically solve
the master equation [26,48,49] of the system

∂ρ
∂t ¼ −i½H; ρ� − κ

2
Dða; ρÞ − 1

2

XN
k¼1

X4
s¼1

γksDðLks; ρÞ: ð7Þ

Here,DðO; ρÞ ¼ O†Oρþ ρO†O − 2OρO†, ρ is the density
matrix, κ and γks are the cavity loss rate and the atomic
spontaneous decay rate, and Lk1 ¼ j1ikh3j, Lk2 ¼ j2ikh3j,
Lk3 ¼ j1ikh4j, and Lk4 ¼ j2ikh4j are the jump operators.
The results are shown in Figs. 2(c) and 2(d) for N ¼ 8. It is
seen that the squeezing is robust against dissipation and the
maximum achievable squeezing is only slightly influenced
by cavity loss and atomic spontaneous emission as strong
as κ ¼ γd ¼ 5 × 106 s−1. Since we have confirmed the
validity of the virtual excitation of the cavity mode in
earlier simulations, we can adiabatically eliminate the
cavity field from the full master equation to increase the
scale of our simulated system. This results in the following
master equation [26] that involves only the atomic spin
degrees of freedom:

∂ρeff
∂t ¼ −i½Heff ; ρeff � −

γd
2

X
α¼z;�

XN
k¼1

aαDðσkα; ρeffÞ

−
κ

2

�A2

4δ2
DðSx; ρeffÞ þ

B2

4γ2
DðSy; ρeffÞ

�
; ð8Þ

where σkz ¼ j1ikh1j − j2ikh2j, σkþ ¼ j1ikh2j, σk− ¼ j2ikh1j,
and the explicit expressions for az;� can be found in the
Supplemental Material [43]. Using Eq. (8), we can numeri-
cally simulate larger systems with more atoms. In Fig. 3(a),
we plot the maximum achievable squeezing in our system
with strong dissipation, as well as the maximum squeezing
attainable in an ideal OAT Hamiltonian with no dissipation.
The results show that, even in the presence of strong
dissipation, our system can achieve a higher degree of
squeezing than what is possible with ideal OAT, and the
advantage grows with the size of the system. In Fig. 3(b),
we compare the maximum achievable squeezing of an ideal
TACT Hamiltonian in Eq. (5) (cz ¼ 0) with that of ideal
OAT for larger system sizes on the order of 103–105. A
large advantage is observed with our scheme. For a system
size of N ¼ 105 atoms, as in recent experiments [29,50],

the ideal Hamiltonian equation (5) for our system can reach
a squeezing of −47.4 dB, significantly higher than current
schemes based on OAT [8,11,12,14,27] with the same
system size. Since the atomic decay time, estimated as
1=γeff , with γeff ∼ ðΩ2=4Δ2Þγd ≈ ðγχ=g2Þγd [23,25,27],
can be longer than the time required to reach the
optimal squeezing, to ¼ 1.58 lnN=ð3NχÞ [17]—e.g., when
N ¼ 105—using the parameters in Fig. 3(b) with g ¼
1.26 × 107 s−1 and γd ¼ 3.77 × 107 s−1, the atomic decay
time 1=γeff ≈ 13 ms is larger than toð105Þ ≈ 2.4 ms, and
the influence of cavity loss is much weaker than that of the
atoms’ decay, as illustrated in Fig. 2(c), a high degree of
squeezing can be achieved.
Two-mode spin-squeezed states.—Our scheme can be

extended to generate TMSS states [30,31,51] using two
cavities. Assuming a coupling between the two cavity
modes, we have the following total Hamiltonian in the
rotating frame:

Htc ¼ HL þHR − ~Jða†LaReiΔωt þ H:c:Þ; ð9Þ

where a†L;RðaL;RÞ is the creation (annihilation) operator
for the left and right cavity mode, ~J is the tunneling rate
between the cavities, and Δω ¼ ωL

c − ωR
c is the detuning

between the two cavities with the local Hamiltonian
Hα∈ðL;RÞ ¼ −ðAα=2ÞSαxa†αeiδαt − ðBα=2ÞSαya†αe−iγαt þ H:c.
When the coefficients and detunings satisfy the following
conditions,

δL ¼−δR ¼ δ> 0; −γL ¼ γR ¼ γ > 0

Δω¼ δþ γ; AL ¼ AR ¼ A; BL ¼BR ¼B; ð10Þ

the effective Hamiltonian for the two-cavity system can
then be written [43]

d
b

(a) (b)

FIG. 3. (a) Comparison of the maximum achievable squeezing
in our system with strong atomic and cavity dissipation rates
κ ¼ γd ¼ 5 × 106 s−1 and in a dissipation-free OAT system
HOAT ¼ χS2x. Other parameters are the same as in Fig. 2, except
thatΩ ¼ 2 × 107 s−1. (b) Time evolution of ξ2 in our system with
N ¼ 103–105 atoms and no dissipation. (Inset) The maximum
achievable squeezing in our system and in OAT, both without
dissipation. The relevant parameters are Δ1 ¼ −Δ2 ¼
1.88 × 1010 s−1, γ ¼ 2δ ¼ 1.26 × 1010 s−1, and A ¼ B=

ffiffiffi
2

p ¼
0.4δ=N, where N ¼ 500, 1000, 2000, 4000, and 105.
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HT ¼ χ½ðSLz Þ2 − ðSRz Þ2� þ 2JχðSLx SRy þ SLy SRx Þ; ð11Þ

with χ ¼ ðA2=4δÞ ¼ ðB2=4γÞ, and J ¼ ð~J= ffiffiffiffiffi
δγ

p Þ. The sec-
ond term in HT gives rise to a TMSS state. The first term,
which describes the on-site nonlinear interaction in each
cavity, has no contribution when SLz ¼ SRz .
ATMSS state can be identified by checking to see that it

satisfies the inequalityΔ0¼ðΔSð−Þx Þ2þðΔSðþÞ
y Þ2−hSðþÞ

z i<0,

with Sð�Þ
k ¼ SLk � SRk (k ¼ x, y, z) [30,31,51]. This criterion

implies that fluctuations in nonlocal observables S−x and Sþy
can be suppressed at the same time. Thus, it is possible to
achieve higher measurement precisions for them simulta-
neously. When the total spins inside the two cavities are
equal, SL ¼ SR, a TMSS state can be obtained by letting
the system evolve under HT from an initial state in which
both cavities are in a coherent state: jΨð0Þi ¼ jS; Si, with
jmL

i ; m
R
j i (mL;R

i ¼ −S;−Sþ 1;…; S − 1; S) being the
eigenvectors of Sz, and S ¼ N=2 the total spin. Plotted in
Figs. 4(a) and 4(b) is the time evolution ofΔ0ðtÞ. One can see
that Δ0 is always zero when J ¼ 0, as both cavities are
decoupled in this case. When there is photon tunneling
between the cavities—and thus J ≠ 0—Δ0 can become
negative, which signals the emergence of TMSS states.
Comparing Fig. 4(a) with Fig. 4(b), we note that the time it
takes to reach Δ0

min, the minimum value of Δ0, is controlled
by the coupling strength J, andΔ0

min decreases asS increases.
To investigate the entanglement of the TMSS state,
we have further calculated the von Neumann entropy
EðρLÞ ¼ −ρL ln ρL of the reduced density matrix ρL ¼
TrRðjΨihΨjÞ, as well as the two-parameter quantum
Fisher information IðSþx ; S−y Þij ¼ 2hΨjfHi;HjgjΨi −
4hΨjHijΨihΨjHjjΨi [52], with ði; jÞ ¼ ð1; 2Þ. Here,

H1ð2Þ ¼ Sþx ðS−y Þ, and f�; �g is the anticommutation relation.
The results are shown in Figs. 4(c) and 4(d). The TMSS
state generated by the effective Hamiltonian (11) leads to
IðSþx ; S−y Þ11 ¼ IðSþx ; S−y Þ22 ¼ IðSþx ; S−y Þ [see Fig. 4(d)] and
IðSþx ; S−y Þ12;21 ¼ 0. Comparing Figs. 4(c) and 4(d) with
Fig. 4(a), we find that Δ0 reaches its minimum (marked
by black solid arrows) when EðρLÞ ¼ EðρLÞmax=2. This
result implies that the TMSS state at Δ0

min is not a maximum
entangled state. In addition, both IðSþx ; S−y Þ andEðρLÞ attain
their maxima only when Δ0 evolves back to zero.
To explore the influence of the imbalance between SL

and SR on the TMSS state, we fix SL and vary SR with the
initial state jSL; SRi. In Fig. 5, the numerical result shows
thatΔ0

min reaches the optimal value only when SL ¼ SR and
increases as ΔS ¼ jSL − SRj increases. The time it takes to
reach Δ0

min, to also decreases with ΔS. In contrast to the
balanced case, EðρLÞ at to is smaller than EðρLÞmax=2, and
it does not reach the maximum when Δ0 evolves back to
zero, as shown in Fig. 5(b). Therefore, to obtain a TMSS
state with a lower Δ0, it is helpful to prepare two cavities
with equal total spins.
Experimental consideration.—Experimentally, our

model can be realized with an ensemble of 87Rb atoms in
optical cavities [25,26]. Two hyperfine states jF ¼ 1;
mF ¼ 1i and jF ¼ 2; mF ¼ 2i of the manifold 5S1=2 can
be used as the lower energy states j1i and j2i in Fig. 1. Their
energy splitting is 4.27 × 1010 s−1. Two other hyperfine
states of themanifold5P1=2with a splittingof5.03 × 109 s−1

can be selected as the higher excited states j3i and j4i. This
choice leads to a detuning ofΔ1 − Δ2 ¼ 3.77 × 1010 s−1. To
implement the effective TACT Hamiltonian in Eq. (5) with
cz ¼ 0 and cx ¼ cy, we have a total of ten adjustable

parameters, namely, Δ1;2, Ω1;2, ~Ω1;2, δ1;2, and γ1;2. They
need to satisfy the constraints Δ1 − Δ2 ¼ 3.77 × 1010 s−1,
ðA2=δÞ ¼ ðB2=γÞ, and several others listed in the
Supplemental Material [43]. Since the number of these
constraints is less than the number of adjustable parameters,
both the TACT model and the LMG model can be achieved
by adjusting the detunings and couplings.

FIG. 4. Time evolution of squeezing, entanglement, and quan-
tum Fisher information of two-mode spin-squeezed states with
the same total spin number for the two modes. (a) Δ0 vs t while
S ¼ N=2 ¼ 5, and J ¼ 0, 0.03, 0.05, 0.1. (b) Δ0 vs t while
J ¼ 0.1, and S ¼ 5, 15, 25. (c) Dependence of the von Neumann
entropy EðρLÞ on time for J ¼ 0.05, 0.1 when S ¼ 5. (d) The
quantum Fisher information for jΨðtÞi at J ¼ 0.05, 0.1 when
S ¼ 5.
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FIG. 5. Time evolution of squeezing and entanglement of
two-mode spin-squeezed states with different total spin numbers
for the two modes. (a) Δ0 and (b) EðρLÞ vs t for a fixed SL ¼
NL=2 ¼ 25 and J ¼ 0.1. SR varies from 20 to 30.
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Conclusion.—We proposed a scheme to realize an
effective TACT Hamiltonian in a cavity-atom interacting
system via phase-locked atom-photon coupling. We proved
that the approximations used in our derivation are justified
and demonstrated that greater degrees of squeezing can be
achieved in our system than existing schemes based on
OAT. Furthermore, we generalized our ideas to a two-cavity
system and showed how TMSS states can be realized.
Because of the high tunability of our scheme, it is possible
to access the full parameter ranges of the LMG model,
enabling us to explore its rich physics [53–58].
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