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We analytically compute the five-loop term in the beta function which governs the running of αs—the
quark-gluon coupling constant in QCD. The new term leads to a reduction of the theory uncertainty in αs
taken at the Z-boson scale as extracted from the τ-lepton decays as well as to new, improved by one more
order of perturbation theory, predictions for the effective coupling constants of the standard model Higgs
boson to gluons and for its total decay rate to the quark-antiquark pairs.
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Asymptotic freedom, manifest by a decreasing coupling
with increasing energy, can be considered as the basic
prediction of non-Abelian gauge theories and was crucial
for establishing quantum chromodynamics (QCD) as the
theory of strong interactions [1,2]. The dominant, leading
order prediction was quickly followed by the correspond-
ing two-loop [3,4] and three-loop [5,6] results. The next
result, the four-loop calculation, was performed almost
twenty years later [7] and confirmed in Ref. [8]. These
results have moved the theory from qualitative agreement
with experiment, as observed on the basis of the early
results, to precise quantitative predictions, valid over a wide
kinematic range, from τ-lepton decays up to LHC results.
Although the agreement between theory predictions and

experimental results is impressive already now, it is tempting
to push the theory prediction as high as possible. On the one
hand, one may expect an even better agreement between
theory and experiment. On the other hand, it is of theoretical
interest to push gradually into the region where individual
terms of the series might start to increase, thus demonstrating
the asymptotic divergenceof the perturbative series.At amore
modest level we note that predictions for the five-loop term
that can be found in the literature are based on a variety of
methods and exhibit for some cases quite a dramatic variation
of the size of the term (we will give more details later).
There are, of course, a number of phenomenological

applications of the five-loop result, which will be discussed
in this Letter. On the one hand, there is the relation between

Z-boson and τ-lepton decay rates into hadrons, which
involves the strong coupling at two vastly different scales.
On the other hand, we will discuss the Higgs boson decay
rate into bottom quarks and into gluons, which are sensitive
to the five-loop running of the QCD coupling.
Let us start with the definition of the beta function,

βðasÞ ¼ μ2
d
dμ2

asðμÞ ¼ −
X
i≥0

βiaiþ2
s ; ð1Þ

which describes the running of the quark-gluon coupling
as ≡ αs=π as a function of the normalization scale μ within
the renormalization group approach [9–11].
Using the same theoretical tools as in the calculations of

Refs. [12] and [13] we have computed the QCD β function
in five-loop order with the result
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where nf denotes the number of active quark flavors. As
expected from the three and four-loop results, the higher
transcendentalities ζ6 and ζ7 that could be present at five-
loop order [14], are actually absent. Note that the con-
tribution in β4 that is leading in nf (proportional to n4f) was
computed long ago with a very different technique [16] for
a generic gauge group. For the physical case of SUð3Þ we
find full agreement.
In numerical form the coefficients β0 − β4 read

β0 ≈ 2.75 − 0.166667nf;

β1 ≈ 6.375 − 0.791667nf;

β2 ≈ 22.3203 − 4.36892nf þ 0.0940394n2f;

β3 ≈ 114.23 − 27.1339nf þ 1.58238n2f þ 0.0058567n3f;

β4 ≈ 524.56 − 181.8nf þ 17.16n2f − 0.22586n3f

− 0.0017993n4f: ð6Þ
Numerically the coefficients are surprisingly small. For

example, for the particular cases ofnf ¼ 3, 4, 5, and 6weget

β̄ðnf ¼ 3Þ ¼ 1þ 1.78as þ 4.47a2s þ 20.99a3s þ 56.59a4s ;

β̄ðnf ¼ 4Þ ¼ 1þ 1.54as þ 3.05a2s þ 15.07a3s þ 27.33a4s ;

β̄ðnf ¼ 5Þ ¼ 1þ 1.26as þ 1.47a2s þ 9.84a3s þ 7.88a4s ;

β̄ðnf ¼ 6Þ ¼ 1þ 0.93as − 0.29a2s þ 5.52a3s þ 0.15a4s ;

where β̄≡βðasÞ=−β0a2s¼1þP
i≥1 β̄ia

i
s. A very modest

growth of the coefficients is observed and the (apparent)
convergence is better than one would expect from compari-
son with other examples.
It is instructive to compare β4 as shown in Eq. (6) with a

(20 years old) prediction based on the so-called method of
the asymptotic Padé approximant (APAP) from Ref. [17]
(the boxed term was used as input):

βAPAP4 ¼ 740 − 213nf þ 20n2f − 0.0486n3f − 0.0017993n4f :

Unfortunately, this strikingly good agreement for all
powers of nf except for n3f term does not always survive
for fixed values of nf due to huge cancellations between
contributions proportional to different powers of nf (see
Table I below).
At this point it may be useful to present the impact of the

five-loop term on the running of the strong coupling from
low energies, say μ ¼ Mτ, up to the high energy region

μ ¼ MH, by comparing the predictions based on three- and
four- versus five-loop results [18]. We start from the scale

of Mτ with αð3Þs ðMτÞ ¼ 0.33 (as given in Ref. [20]) and
evolve the coupling up to 3 GeV. At this point the four-loop
matching from 3 to 4 flavors is performed. The strong
coupling now runs up to μ ¼ 10 GeV and, at this point, the
number of active quark flavors is switched from the 4 to 5.
Subsequently, the strong coupling runs again up toMZ and,
finally, up to the Higgs massMH ¼ 125 GeV. The relevant
values of αs are listed in Table II. The combined uncertainty

in αð5Þs ðMZÞ induced by running and matching can be

conservatively estimated by the shift in αð5Þs ðMZÞ produced
by the use of five-loop running (and, consequently) four-
loop matching instead of four-loop running (and three-loop
matching). It amounts to a minute 6 × 10−5 which is by a
factor of 3 less than the similar shift made by the use of
four-loop running instead of the three-loop one (see

Table II). Note that the final value of αð5Þs ðMZÞ which

follows from αð3Þs ðMτÞ is in remarkably good agreement
with the fit to electroweak precision data (collected in
Z-boson decays), namely ([21]):

αð5Þs ðMZÞ ¼ 0.1196� 0.0030: ð7Þ
The error is entirely given by the experimental uncertainty.
As anticipated in Ref. [13], the running of mb from

low energies, say 10 GeV, is affected by the five-loop term,
which in turn, slightly modifies the Higgs boson decay rate
into a quark pair. This rate is given by

ΓðH → ff̄Þ ¼ GFMH

4
ffiffiffi
2

p
π
m2

fðμÞRSðs ¼ m2
H; μÞ; ð8Þ

where μ is the normalization scale and RS the spectral
density of the scalar correlator, known to α4s from [24]

RSðs ¼ M2
H; μ ¼ MHÞ

¼ 1þ 5.667as þ 29.147a2s þ 41.758a3s − 825.7a4s ;

¼ 1þ 0.2062þ 0.0386þ 0.0020 − 0.00145; ð9Þ

where we set asðMHÞ ¼ αsðMHÞ=π ¼ 0.1143=π ¼ 0.0364
and RS is evaluated for the Higgs mass value MH ¼
125 GeV. For the running of the b quark mass the

TABLE I. Comparison of the exact results for β4 with the
predictions based on APAP for different values of nf.

nf 0 1 2 3 4 5 6
βexact4 525 360 228 127 57 15 0.27
βAPAP4 741 548 395 281 205 169 170

TABLE II. Running of αs from μ ¼ Mτ to μ ¼ MH. For the
threshold values of c and b heavy quarks we have chosen [22,23]
mcð3 GeVÞ ¼ 0.986 GeV and mbð10 GeVÞ ¼ 3.160 GeV,
respectively.

Number
of loops αð3Þs ðMτÞ αð5Þs ðMZÞ αð5Þs ðMHÞ
3 0.33� 0.014 0.1200� 0.0016 0.1145� 0.0014
4 0.33� 0.014 0.1199� 0.0016 0.1143� 0.0014
5 0.33� 0.014 0.1198� 0.0016 0.1143� 0.0014
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corresponding input is taken from a relatively low scale and
has to be evolved up to MH. The shift from the five-loop
term is then given by

δm2
bðMHÞ

m2
bðMHÞ

¼ −1 × 10−4 ð10Þ

which at present and in the foreseeable future is negligible.
We want to stress here that the effect due to the Oðα4sÞ term
in Eq. (9) is formally of the same order as the one induced
by the five-loop running of mb.
Another application of our result for the β function is the

determination of the effective Higgs-gluon-gluon coupling.
In the heavy top limit, the Higgs boson couples directly
with gluons via the effective Lagrangian of the form
[25–28]

Leff ¼ −21=4G1=2
F HC1(μ

2=m2
t ; asðμÞ)Ga

νρGa
νρ: ð11Þ

The effective coupling constant C1(μ
2=m2

t ; asðμÞ) appears
as a common factor in two quantities important for Higgs
physics processes, namely, Higgs decay into gluons (one of
the main decay channels for the standard model Higgs
boson) and Higgs production via the gluon fusion (the main
Higgs production mode on LHC). It is expressible through
massive tadpoles and was computed at four loops in 1997
[29] (long before the direct calculation of four-loop generic
massive tadpoles started to be technically feasible). This
happened to be possible due to a low energy theorem (exact
in all orders) [29]

C1 ¼ −
1

2
m2

t
∂

∂m2
t
ln ζ2g;

α0sðμÞ ¼ ζ2g(μ
2=m2

t ; αsðμÞ)αsðμÞ ð12Þ
which connects C1 with the corresponding “decoupling”
constant ζg for αs. The appearance of the derivative ∂=∂m2

t

means that the most complicated (that is constant) part of ζ2g
does not contribute to C1, so that one could use the
corresponding RG equation to find logs at next loop order
(provided we know the β function at the same increased
loop order).
Since the decoupling constant is known at four loops

from Refs. [30,31] we can now use Eqs. (12) and (5) to
extend the known four-loop result to one more loop:

C1 ¼ −
1

12
asð1þ 2.750as þ 6.306a2s

þ 4.794a3s þ 41.447a4sÞ: ð13Þ

In this expression as ¼ αð6Þs ðμtÞ=π, with μt being a scale-
invariant top quark mass defined as μt ¼ mtðμtÞ. Note that
the contribution due to β4 to the last coefficient (boxed
below) is significant, namely, 41.447¼−47.611þ 89.058 .
As another application let us mention the connection with
the renormalization group invariant (RGI) mass:

mRGI ≡mðμ0Þ=c(asðμ0Þ); ð14Þ
with

mðμÞ
mðμ0Þ

¼ c(asðμÞ)
c(asðμ0Þ)

;

cðxÞ ¼ exp

�Z
x
dx0

γmðx0Þ
βðx0Þ

�
; ð15Þ

which could be determined in lattice calculations. The
function cðxÞ does depend not only on the quark mass
anomalous dimension γm (known from Refs. [13,32]) but
also on the β function. In the five-loop approximation we
get (for a typical for lattice simulations value of nf ¼ 3)

cðxÞ ¼
nf¼3

x4=9ð1þ 0.895xþ 1.371x2 þ 1.952x3 þ 9.411x4Þ;

ð16Þ
with 9.411 ¼ 15.6982 − 0.11111β̄4 and β̄4 ¼ β4=β0 ¼
56.5876.
The precise knowledge of the function cðxÞ (which is a

scheme dependent quantity) is required in order to find the
mass of the strange quark in a well-defined renormalization
scheme (usually the MS one) from mRGI

s measured with
lattice simulations at very high energies around 100 GeV
[33]. With a typical value of αsð2 GeVÞ=π ¼ 0.1 we find
that the series Eq. (16) shows quite good convergence. In
contrast, a value of β4 as large as −2000 as estimated in
Ref. [34] would lead to a significantly less stable series.
Technical details.—To evaluate the β function we need

to evaluate the following three renormalization constants
(RCs) in five-loop order: Zccg

1 for the ghost-ghost-gluon
vertex, Zc

3 for the inverted ghost propagator, and Z3 for the
inverted gluon propagator. The total number of five-loop
diagrams contributing to the RCs (as generated by QGRAF
[35]) amounts to about one and a half million (1.5 × 106),
with the gluon wave function Z3 (around 3 × 105 diagrams)
being the most complicated one. Every power of nf in
Eq. (5) was computed separately with the help of the FORM

[36,37] program BAICER, implementing the algorithm of the
works [38–40].
With a typical setup of 15–20 workstations (with 8 cores

each) running a thread-based version of FORM [41] the
calculation of two first subproblems (n4f and n3f) took
together about a couple of weeks, while the remaining three
most complicated pieces (proportional to n2f, n

1
f and n0f

correspondingly) required up to 7 months of running time
for every particular nf slice.
Summary.—The exact result for the five-loop term of the

QCD β function allows us to relate the strong coupling
constant αs, as determined with N3LO accuracy at low
energies, say Mτ with the strong coupling as evaluated at
high scales, say MZ or MH. Including the exact five-loop
term has little influence on the central value of the
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prediction, a consequence of partial cancellations between
various contributions from matching and running.
However, the five-loop result leads to a considerable further
reduction of the theory uncertainty and allows us to
combine values from low and high energies of appropriate
order. It also should be useful in the elimination of the
renormalization scheme and scale ambiguities in perturba-
tive QCD within the framework of the principle of
maximum conformality and commensurate scale relations
[42] or, closely related, the sequential extended BLM
approach [43,44].
The continued running of our calculations at such

computer and time scales would be virtually impossible
without the effective support of our computer administra-
tion, in particular, Alexander Hasselhuhn, Jens Hoff, David
Kunz, Peter Marquard, and Matthias Steinhauser, to whom
all we express our sincere thanks. We are grateful to
Michael Spira and Andreas Maier for the careful reading
of the first version of the Letter and letting us know about
numerical errors (fixed in the current version) in Eq. (13)
and in Table II.

The work by K. Chetykin and J. H. Kühn was supported
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Note added.—After our calculations were finished, the
subleading term in nf in the coefficient β4 [proportional to
n3f in Eq. (5)] as well as our main result, Eq. (5), were
confirmed and extended to the case of a generic gauge
group in Refs. [45] and [46], correspondingly.
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