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The first lattice QCD calculation of the form factors governing Λc → Λlþνl decays is reported. The
calculation was performed with two different lattice spacings and includes one ensemble with a pion mass
of 139(2) MeV. The resulting predictions for the Λc → Λeþνe and Λc → Λμþνμ decay rates divided by

jVcsj2 are 0.2007(71)(74) and 0.1945ð69Þð72Þ ps−1, respectively, where the two uncertainties are statistical
and systematic. Taking the Cabibbo-Kobayashi-Maskawa (CKM) matrix element jVcsj from a global fit
and the Λc lifetime from experiments, this translates to branching fractions of BðΛc → ΛeþνeÞ ¼
0.0380ð19ÞLQCDð11ÞτΛc and BðΛc → ΛμþνμÞ ¼ 0.0369ð19ÞLQCDð11ÞτΛc . These results are consistent with,
and two times more precise than, the measurements performed recently by the BESIII Collaboration. Using
instead the measured branching fractions together with the lattice calculation to determine the CKMmatrix
element gives jVcsj ¼ 0.949ð24ÞLQCDð14ÞτΛc ð49ÞB.

DOI: 10.1103/PhysRevLett.118.082001

Precision studies of processes in which heavy bottom or
charm quarks decay to lighter quarks play an important role
in testing the standard model of elementary particle
physics. While most of these analyses are being performed
using B and D mesons, decays of Λb and Λc baryons can
provide valuable additional information. Two examples that
shed new light on puzzles posed by mesonic decays are the
determination of the ratio of CKM matrix elements
jVub=Vcbj from the Λb → pμ−νμ and Λb → Λcμ

−νμ decay
rates [1], and an analysis of the rare b → sμþμ− transition
using Λb → Λμþμ− [2]. Both studies rely on nonperturba-
tive lattice QCD calculations of form factors describing the
baryonic matrix elements of the underlying quark cur-
rents [3,4].
This Letter focuses on the charmed-baryon decays Λc →

Λlþνl (l ¼ e, μ), whose rates are proportional to jVcsj2 in
the standard model. Previous determinations of this CKM
matrix element are

jVcsj ¼
8
<
:

1.008ð5Þð16Þ from Ds → lþνl½5; 6�;
0.975ð25Þð7Þ from D → Klþνl½6; 7�;
0.97344ð15Þ indirect;CKMunitarity ½8�:

ð1Þ

The motivations for studying Λc → Λlþνl include the
following: (1) Taking the precisely determined value of
jVcsj from CKM unitarity, a comparison between calcu-
lated and measured Λc → Λlþνl decay rates provides a
stringent test of the methods used to compute the heavy-
baryon decay form factors. (2) Combining the Λc →
Λlþνl decay rates from experiment with a lattice QCD
calculation of the Λc → Λ form factors gives a new direct
determination of jVcsj and new constraints on physics
beyond the standard model (see, e.g., Ref. [9] for a recent

discussion of new physics in c → slþνl transitions). (3) If
the Λc → Λlþνl decay rates are known precisely, from
experiment or lattice QCD, these modes can be used as
normalization modes in measurements of a wide range of
other charm and bottom baryon decays [10]. The most
precise measurements of the Λc → Λlþνl branching
fractions (decay rates times the Λc lifetime) to date have
recently been reported by the BESIII Collaboration [11,12],

BðΛc → ΛlþνlÞ ¼
�
0.0363ð38Þð20Þ; l ¼ e;

0.0349ð46Þð27Þ; l ¼ μ:
ð2Þ

In the standard model, the decay rates depend on six
form factors that parametrize the matrix elements
hΛðp0ÞjsγμcjΛcðpÞi and hΛðp0Þjsγμγ5cjΛcðpÞi as func-
tions of q2 ¼ ðp − p0Þ2. These form factors have previ-
ously been estimated using quark models and sum rules
[13–29], giving branching fractions that vary substantially
depending on the model assumptions. In the following, the
first lattice QCD determination of the Λc → Λ form factors
is reported. The calculation uses state-of-the-art methods
and gives predictions for the Λc → Λlþνl decay rates with
total uncertainties that are smaller than the experimental
uncertainties in Eq. (2) by a factor of 2.
This work is based on gauge field configurations

generated by the RBC and UKQCD collaborations with
2þ 1 flavors of dynamical domain-wall fermions [30,31].
The data sets used here are listed in Table I, and match
those in Refs. [3] and [4], except for the addition of a new
ensemble (denoted as CP) withmπ ¼ 139ð2Þ MeV, and the
removal of the previous “partially quenched” C14, C24,

F23 data sets which had amðvalÞ
u;d < amðseaÞ

u;d . Adding the CP
ensemble significantly aids in the extrapolation of the form
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factors to the physical point, and removing the partially
quenched data sets reduces finite-volume effects.
The charm quark is implemented using an anisotropic

clover action, with parameters tuned to produce the correct
J=ψ relativistic dispersion relation as quantified by the
“speed of light,” c, and the correct spin-averaged mass
m ¼ 3

4
mJ=ψ þ 1

4
mηc [36].On the newCP ensemble, the same

bare parameters as tuned on the coarse 243 × 64 lattice yield
c ¼ 0.9970ð27Þ and m ¼ 3019ð40Þ MeV, consistent with
the experimental value of 3068.5(0.1) MeV [37], and were
therefore used on this ensemble as well. The Λc, Λ,Ds, and
D masses obtained from the different data sets are listed in
Table II.
The renormalization of the c → s vector and axial vector

currents is performed using the mostly nonperturbative
method [38,39] as in Eqs. (18)–(21) of Ref. [3] (with the
replacements b → c, q → s). The nonperturbative coeffi-
cients used here on the coarse 483 × 96, coarse 243 × 64,

and fine 323 × 64 lattices are ZðssÞ
V ¼ 0.710 76ð25Þ, 0.712

73(26), 0.744 04(181) [30] and ZðccÞ
V ¼ 1.358 99ð22Þ,

1.357 25(23), 1.183 21(14); the residual matching coef-
ficients and OðaÞ-improvement coefficients were com-
puted in tadpole-improved one-loop lattice perturbation
theory [40,41] and are given in Table III.
The Λc → Λ form factors are defined as in Eqs. (1) and

(2) of Ref. [4] (with b replaced by c), and were extracted
from ratios of three-point and two-point correlation
functions using the same methods as in Refs. [3,4]. This
involves extrapolations to infinite source-sink separation to
isolate the ground-state contributions, which are performed

jointly for all data sets at matching Λmomenta [3,4]. These
momenta, jp0j2, were set to 1, 2, 3, and 4 times ð2π=LÞ2 on
all data sets except CP. For the latter, the values 4, 8, 12, and
16 times ð2π=LÞ2 were used because L ¼ Nsa is twice as
large. The ranges of source-sink separations were t=a ¼
4…15 on the coarse lattices and t=a ¼ 5…17 on the fine
lattices; full OðaÞ improvement of the currents was
performed for all source-sink separations (instead of just
a subset as in Refs. [3,4]). Examples for the ratios and
t → ∞ extrapolations are shown in Fig. 1.
The ground-state form factors obtained in this way for

the different data sets and different discrete momenta are
shown as the data points in Fig. 2. To obtain parametriza-
tions of the form factors in the physical limit (a ¼ 0,
mπ ¼ mπ;phys, mηs ¼ mηs;phys), fits were then performed
using z expansions [42] modified with additional terms to
describe the dependence on a, mπ , and mηs . In the physical
limit, the fit functions reduce to the form

fðq2Þ ¼ 1

1 − q2=ðmf
poleÞ2

Xnmax

n¼0

afn½zðq2Þ�n; ð3Þ

where zðq2Þ ¼ ½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p Þ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p Þ�with t0 ¼ q2max ¼ ðmΛc

−mΛÞ2 and tþ ¼ ðmDþ
mKÞ2. The Ds meson pole masses are mfþ;f⊥

pole ¼2.112GeV,

TABLE I. Parameters of the lattice gauge field ensembles and u, d, s quark propagators [30,31]. The lattice spacings given here were
determined using the ϒð2SÞ −ϒð1SÞ splitting [32]. The ηs is an artificial pseudoscalar ss̄ meson used to tune the strange-quark mass

[33]; at the physical point, one has mðphysÞ
ηs ¼ 689.3ð1.2Þ MeV [34]. On the CP ensemble, all-mode-averaging [35] with 64 sloppy (sl)

and 2 exact (ex) samples per gauge configuration was used for the computation of the quark propagators.

Set β N3
s × Nt amðseaÞ

u;d amðseaÞ
s

a [fm] amðvalÞ
u;d mðvalÞ

π [MeV] amðvalÞ
s mðvalÞ

ηs [MeV] Nsamples

CP 2.13 483 × 96 0.00078 0.0362 0.1142(15) 0.00078 139(2) 0.0362 693(9) 2560 sl, 80 ex
C54 2.13 243 × 64 0.005 0.04 0.1119(17) 0.005 336(5) 0.04 761(12) 2782
C53 2.13 243 × 64 0.005 0.04 0.1119(17) 0.005 336(5) 0.03 665(10) 1205
F43 2.25 323 × 64 0.004 0.03 0.0849(12) 0.004 295(4) 0.03 747(10) 1917
F63 2.25 323 × 64 0.006 0.03 0.0848(17) 0.006 352(7) 0.03 749(14) 2782

TABLE II. Hadron masses in lattice units obtained from
exponential fits to two-point functions.

Set amΛc
amΛ amDs

amD

CP 1.3194(36) 0.6483(33) 1.12902(39) 1.0720(12)
C54 1.3706(40) 0.7348(30) 1.13156(49) 1.0763(13)
C53 1.3647(60) 0.7096(47) 1.11550(59) 1.0763(13)
F43 1.0185(67) 0.5354(29) 0.85447(47) 0.81185(91)
F63 1.0314(40) 0.5514(23) 0.85639(33) 0.81722(56)

TABLE III. Residual matching and improvement coefficients
for the c → s vector and axial vector currents, computed using
automated lattice perturbation theory [40,41]. The notation is the
same as in Eqs. (18)–(21) of Ref. [3].

Parameter Coarse lattice Fine lattice

ρV0 ¼ ρA0 1.002 74(49) 1.001 949(85)
ρVj ¼ ρAj 0.994 75(62) 0.996 75(68)
cRV0 ¼ cRA0 0.0402(88) 0.0353(92)
cLV0 ¼ cLA0 −0.0048ð48Þ −0.0027ð28Þ
cRVj ¼ cRAj 0.0346(51) 0.0283(43)
cLVj ¼ cLAj 0.000 12(26) 0.000 40(42)
dRVj ¼ −dRAj −0.0041ð41Þ −0.0039ð39Þ
dLVj ¼ −dLAj 0.0021(21) 0.0026(26)
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mf0
pole ¼ 2.318 GeV, mgþ;g⊥

pole ¼ 2.460 GeV, and mg0
pole ¼

1.968 GeV [37], and to evaluate tþ, the masses mD ¼
1.870 GeV and mK ¼ 494 MeV are used. Following
Refs. [3,4], two separate fits were performed: a “nominal
fit,” giving the central values and statistical uncertainties of
the form factors, and a “higher-order fit,” used to compute
systematic uncertainties according to Eqs. (50)–(56) of
Ref. [4]. The nominal fit had the same form as Eq. (36) of
Ref. [4], but with nmax ¼ 2 instead of nmax ¼ 1 (no prior
constraints on any parameters were used in the nominal fit).
The higher-order fit had the same form as in Eq. (39) of
Ref. [4], but with nmax ¼ 3. In addition to the z3 terms, this
fit also includes terms of higher order in a, mπ , mηs , and
was performed after modifying the data correlation matrix
to include the uncertainties from the renormalization and
OðaÞ-improvement coefficients, from finite-volume effects
(1.0%, rescaled from Ref. [4] according to e−min½mπL�), and
from the missing isospin breaking-QED corrections (0.5%,
0.7%). The priors for the higher-order parameters were
chosen as in Ref. [4], except that the coefficients af2 were
left unconstrained and the priors for af3 were set to 0� 30.
The fit results for the parameters afn that describe the form
factors in the physical limit are given in Table IV, and the
form factors are plotted in Fig. 2. The lattice results do not
significantly constrain the z3 terms (note that zmax ≈ 0.08),
so that their uncertainties are governed by the priors.
The resulting standard model predictions for the Λc →

Λlþνl differential decay rates, without the factor of jVcsj2,
are shown in Fig. 3. The q2-integrated rates are

ΓðΛc → ΛlþνlÞ
jVcsj2

¼
�
0.2007ð71Þð74Þ ps−1; l ¼ e;

0.1945ð69Þð72Þ ps−1; l ¼ μ;
ð4Þ

where the two uncertainties are from the statistical and
total systematic uncertainties in the form factors. Using
the world average of Λc lifetime measurements,
τΛc

¼ 0.200ð6Þ ps [37], and jVcsj ¼ 0.97344ð15Þ from a

FIG. 1. Lattice results from the CP ensemble for the ratios Rfðjp0j; tÞ, defined as in Eqs. (52)–(54) and (58)–(60) of Ref. [3], at
jp0j2 ¼ 4ð2π=LÞ2. These ratios are equal to the ground-state form factors fðjp0jÞ up to contamination from excited states that decays
exponentially with t. The curves shown are correlated fits of the form Rfðjp0j; tÞ ¼ fðjp0jÞ þ Afðjp0jÞe−δfðjp0 jÞt, which includes the
leading excited-state contributions. Data points at the smallest separations that are plotted with open symbols are excluded from the fits
to suppress contamination from higher excited states; the values of tmin were chosen such that χ2=d:o:f: ≤ 1. The remaining systematic
uncertainties due to higher excited states were estimated as the shifts in the fitted fðjp0jÞ when further increasing tmin by one unit
everywhere; these uncertainties were added in quadrature to the statistical uncertainties.

TABLE IV. Results for the z-expansion parameters describing
the form factors in the physical limit. Files containing the
parameter values with more digits and the full covariance
matrices are provided as Supplemental Material [43].

Nominal fit Higher-order fit

af⊥0 1.30� 0.06 1.28� 0.07

af⊥1 −3.27� 1.18 −2.85� 1.34

af⊥2 7.16� 11.6 7.14� 12.2

af⊥3 −1.08� 30.0

afþ0 0.81� 0.03 0.79� 0.04

afþ1 −2.89� 0.52 −2.38� 0.61

afþ2 7.82� 4.53 6.64� 6.07

afþ3 −1.08� 29.8

af00 0.77� 0.02 0.76� 0.03

af01 −2.24� 0.51 −1.77� 0.58

af02 5.38� 4.80 4.93� 6.28

af03 −0.26� 29.8

ag⊥;gþ0
0.68� 0.02 0.67� 0.02

ag⊥1 −1.91� 0.35 −1.73� 0.54
ag⊥2 6.24� 4.89 5.97� 6.64
ag⊥3 −1.68� 29.8
agþ1 −2.44� 0.25 −2.22� 0.35
agþ2 13.7� 2.15 12.1� 4.43
agþ3 12.9� 29.2
ag00 0.71� 0.03 0.72� 0.04
ag01 −2.86� 0.44 −2.80� 0.53
ag02 11.8� 2.47 11.7� 4.74
ag03 1.35� 29.4
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CKM unitarity global fit [8] then yields the branching
fractions

BðΛc→ΛlþνlÞ¼
�0.0380ð19ÞLQCDð11ÞτΛc ; l¼e;

0.0369ð19ÞLQCDð11ÞτΛc ; l¼μ;
ð5Þ

where the uncertainties marked “LQCD” are the total form
factor uncertainties from the lattice calculation. These

results are consistent with, and 2 times more precise than
the BESIII measurements shown in Eq. (2). This is a
valuable check of the lattice methods which were also used
in Refs. [1–4].
Combining instead the BESIII measurements (2) and

τΛc
¼ 0.200ð6Þ ps with the results in Eq. (4) to determine

jVcsj from Λc → Λlþνl gives

jVcsj ¼

8
>><
>>:

0.951ð24ÞLQCDð14ÞτΛc ð56ÞB; l ¼ e;

0.947ð24ÞLQCDð14ÞτΛc ð72ÞB; l ¼ μ;

0.949ð24ÞLQCDð14ÞτΛc ð49ÞB; l ¼ e; μ;

ð6Þ

where the last line is the correlated average over l ¼ e, μ.
This is the first determination of jVcsj from baryonic
decays. The result is consistent with CKM unitarity, and
the uncertainty can be reduced further with more precise
measurements of the Λc → Λlþνl branching fractions.

I thank Christoph Lehner for computing the perturbative
renormalization and improvement coefficients, and Sergey
Syritsyn for help with the generation of the domain-wall
propagators on the physical-pion-mass ensemble. I am
grateful to the RBC and UKQCD Collaborations for

FIG. 2. Lattice QCD results for the Λc → Λ form factors, along with the modified z-expansion fits evaluated at the lattice
parameters (dashed and dotted lines) and in the physical limit (solid lines, with statistical and total uncertainties
indicated by the inner and outer bands).

FIG. 3. Predictions for the Λc → Λlþνl differential decay rates
(divided by jVcsj2) in the standard model. For clarity, the
uncertainties are shown only for l ¼ e; the inner and outer
bands correspond to the statistical and total uncertainties.
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