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We propose a new approach towards analytically solving for the dynamical content of conformal field
theories (CFTs) using the bootstrap philosophy. This combines the original bootstrap idea of Polyakov with
the modern technology of the Mellin representation of CFT amplitudes. We employ exchange Witten
diagrams with built-in crossing symmetry as our basic building blocks rather than the conventional
conformal blocks in a particular channel. Demanding consistency with the operator product expansion
(OPE) implies an infinite set of constraints on operator dimensions and OPE coefficients. We illustrate the
power of this method in the ϵ expansion of the Wilson-Fisher fixed point by reproducing anomalous
dimensions and, strikingly, obtaining OPE coefficients to higher orders in ϵ than currently available using
other analytic techniques (including Feynman diagram calculations). Our results enable us to get a
somewhat better agreement between certain observables in the 3D Ising model and the precise numerical
values that have been recently obtained.
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Introduction.—The Wilsonian paradigm [1–3] for quan-
tum field theories puts the scale invariant fixed points of the
renormalization group on center stage. In the context of
relativistic quantum field theories (QFTs), these critical
points are believed to be conformally invariant [4]. The
study of such conformal field theories (CFTs) is thus
central to many areas of physics. Unfortunately, we
currently have very few tools to access the dynamics of
such CFTs, apart from cases where they are free or close to
free. The dynamical data of a CFT are entirely in its
spectrum of dimensions of primary operators as well as
their three point functions [or operator product expansion
(OPE) coefficients]. In principle, conformal invariance and
associativity of the OPE in the four point function give
powerful constraints on these data [5,6]. In practice, apart
from two dimensions [7], this constraint has been difficult
to effectively implement.
Recently, there has been a successful revival [8,9] of this

bootstrap program, in which associativity and positivity
constraints have been translated into inequalities which can
be efficiently implemented numerically using linear program-
ing [8], semidefinite programing [10], and judicious truncation
[11]. This has led to rather amazing constraints on the low-
lying spectrum (as well as the OPE coefficients) of various
nontrivial CFTs—see Ref. [9] for references. These numerical
techniques nowgive thebest data on the low-lyingoperators of
the 3D Ising model [10,12,13] and hint at there being special
points in the domains allowed by the inequalities.
Here, we will outline a new approach to the conformal

bootstrap for CFTd which is calculationally effective, as
well as being conceptually suggestive. This involves two
ingredients which turn out to blend very naturally. The first

involves revisiting an approach of Polyakov which has
crossing symmetry from the outset but is not obviously
compatible with the operator expansion. Wewill implement
this approach in terms of conformally invariant building
blocks which are exchange Witten diagrams in (dþ 1)-
dimensional anti–de Sitter space (AdSdþ1) rather than the
conventional conformal blocks. In other words, for a four
point function of identical external scalars, we expand the
amplitude as a function of cross ratios ðu; vÞ in terms of the
functions WðsÞ

Δ;lðu; vÞ, which can be written in terms of an
integral of an AdSdþ1 bulk to bulk propagator (correspond-
ing to a CFTd operator of dimensionΔ and spin l) together
with bulk to boundary propagators for the four external
scalars of the dimension Δϕ:

Aðu;vÞ ¼ hOð1ÞOð2ÞOð3ÞOð4Þi
¼
X
Δ;l

cΔ;l½WðsÞ
Δ;lðu;vÞ þWðtÞ

Δ;lðu;vÞ þWðuÞ
Δ;lðu;vÞ�:

ð1Þ

The sum here is over the entire physical spectrum of
primary operators generically characterized by the dimen-
sions (Δ) and spin (l). The coefficients cΔ;l are propor-
tional to (the square of) the OPE coefficients. The central
observation of Polyakov [6] was that there are spurious
powers, in this case, uΔϕ (and uΔϕ ln u) in such an
expansion. Demanding cancellations of these terms (as a
function of v) gives an infinite number of constraints on Δ
as well as the coefficients cΔ;l.
The second ingredient exploits the Mellin representation

[14–18] of CFT amplitudes, which is a close counterpart of
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momentum space in the usual QFTs. For the above
amplitude, this representation is essentially a Mellin
transform with respect to the cross ratios:

Aðu; vÞ ¼
Z

i∞

−i∞

ds
2πi

dt
2πi

usvtρΔϕ
ðs; tÞMðs; tÞ: ð2Þ

Here, ρΔϕ
ðs; tÞ ¼ Γ2ð−tÞΓ2ðsþ tÞΓ2ðΔϕ − sÞ is a conven-

ient kinematic factor, whileMðs; tÞ contains the dynamics.
The integral is evaluated by closing the contour appropri-
ately, picking up the poles of the integrand. The expansion
in Eq. (1) can now be translated into Mellin space. Each of

the Witten exchange functions WðsÞ
Δ;lðu; vÞ → MðsÞ

Δ;lðs; tÞ
will be discussed below. We use these functions as
our basis for an expansion of the (reduced) Mellin
amplitude [19]:

Mðs; tÞ ¼
X
Δ;l

cΔ;l½MðsÞ
Δ;lðs; tÞ þMðtÞ

Δ;lðs; tÞ þMðuÞ
Δ;lðs; tÞ�:

ð3Þ
The spurious powers uΔϕ (and uΔϕ ln u) in Aðu; vÞ

translate into spurious single and double poles in the full
Mellin amplitude

Γ2ðΔϕ − sÞMðs; tÞ ¼ qð2Þtot ðtÞ
ðs − ΔϕÞ2

þ qð1Þtot ðtÞ
ðs − ΔϕÞ

þ � � � : ð4Þ

The ellipsis refers to physical contributions as well as
spurious descendant poles. Compatibility with the operator
expansion demands that we set both residues,

qðaÞtot ðtÞ¼
X
Δ;l

cΔ;l½qða;sÞΔ;l ðtÞþqða;tÞΔ;l ðtÞþqða;uÞΔ;l ðtÞ�¼0; ð5Þ

for (a ¼ 1, 2). The terms on the rhs come from the obvious
expansion of the individual terms in Eq. (3) in terms of the
poles, as in Eq. (4). This is our central constraint equation.
We will see that this scheme is calculationally effective

by revisiting the ϵ expansion in ðd ¼ 4 − ϵÞ dimensions for
a single real scalar at the Wilson-Fisher fixed point. We will
find that we can reproduce the answers [2,3] for the
dimensions of ϕ and ϕ2 to Oðϵ3Þ and Oðϵ2Þ, respectively.
For the higher spin currents JðlÞ of the schematic form
ϕ∂lϕ, we reproduce the known anomalous dimensions to
Oðϵ2Þ [3] as well as to the Oðϵ3Þ piece [20]. More
nontrivially, we also determine OPE coefficients, which
are usually difficult to compute using Feynman diagram
techniques. Thus, we find, for the first time, the three point
function Cl of two ϕ’s with JðlÞ to Oðϵ3Þ. Specifically, this
enables one to compute the central charge cT , which is
related to the stress tensor coefficient Cl¼2 to this order.
Similarly, we will also indicate how to reproduce and go
beyond some of the existing results for large spin operators,
which were obtained with the (double) light cone expan-
sion [21–23].
Implementing the Mellin bootstrap.—Witten exchange

functions WðsÞ
Δ;lðu; vÞ are computed from a tree level four

point function with the exchange of a field in AdSdþ1 of
spin l (and corresponding to a conformal dimension Δ on
the boundary) in the s channel [24]. By construction, they
preserve all the isometries of AdSdþ1 and are conformally
covariant. Their expressions are, unfortunately, quite com-
plicated in position space [25]. As has been stressed in the
literature, there is dramatic simplification in Mellin space.

Thus, for a scalar exchange, MðsÞ
Δ;l¼0ðs; tÞ can be written in

terms of a 3F2 hypergeometric function (evaluated at unit
argument). See, for instance, Refs. [15,16]. It is a mero-
morphic function (only of s, in this case) which has simple
(physical) poles at 2s ¼ Δþ 2m, where m ¼ 0; 1; 2….

It is more generally true that MðsÞ
Δ;lðs; tÞ is the sum of a

meromorphic function with poles at 2s ¼ Δ − lþ 2m plus
an additional polynomial in ðs; tÞ of a degree of at most
l − 1. Thus, our building blocks are polynomially bounded
in Mellin space, unlike the conformal blocks, which have
an exponential behavior [26,27]. This is what makes them a
better choice for a basis to expand in terms of. Moreover,
they exhibit the right factorization on the physical poles in
having the same residues as the conformal blocks. The way
the Witten exchange functions differ from the conformal
blocks is that, unlike the latter, they additionally contain the
contribution of so-called double trace operators. These are
operators of dimension for, e.g., ðΔ1 þ Δ2Þ—i.e., 2Δϕ in
our case of identical scalars. In a large N CFT, there are
indeed physical operators with this dimension (“two
particle states”) with ð1=NÞ corrections. However, in a
generic CFT this is not the case, and the term “double trace”
operators is a misnomer for these contributions [28]. They
are really spurious contributions which need to cancel out
in the full amplitude—in both position space and Mellin
space, as discussed above.
Many of these properties of Witten diagrams are trans-

parent in a spectral (or “split”) representation of these
diagrams [15,16,29]. In position space, this can be used to
write the Witten functions as

WðsÞ
Δ;lðu; vÞ ¼

Z
i∞

−i∞
dνμΔ;lðνÞFðsÞ

ν;lðu; vÞ; ð6Þ

where the conformal partial waves FðsÞ
ν;lðu; vÞ are purely

kinematic in nature—their exact form can be found, e.g., in
Ref. [30] and will not be important in the following. The
spectral function for identical external scalars given by
2πiμΔ;lðνÞ ¼ ξΔ;lðνÞξΔ;lð−νÞ, with

ξΔ;lðνÞ ¼
Γ2ð2Δϕ−hþlþν

2
Þ

½ðΔ − hÞ þ ν�ΓðνÞðhþ ν − 1Þl
; ð7Þ

contains the information about the exchanged operators.
The poles (in ν) are at the physical value (together with its
shadow) h� ν ¼ Δ (where h ¼ ðd=2Þ). However, there are
additional poles corresponding to the double trace operator
2Δϕ [31].
In Mellin space we can write the corresponding spectral

representation as
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MðsÞ
Δ;lðs; tÞ ¼

Z
i∞

−i∞
dνμΔ;lðνÞΩðsÞ

ν;lðsÞPðsÞ
ν;lðs; tÞ: ð8Þ

The conformal partial waves go over to a set of so-called

Mack polynomials PðsÞ
ν;lðs; tÞ of degree l in ðs; tÞ

[14,30,32]. We also have an additional factor

ΩðsÞ
ν;lðsÞ ¼

Γðhþν−l
2

− sÞΓðh−ν−l
2

− sÞ
Γ2ðΔϕ − sÞ : ð9Þ

We now pick out the spurious poles as in Eq. (4). First,
Eq. (9) has a denominator piece which cancels against the
Γ2ðΔϕ − sÞ in ρΔϕ

ðs; tÞ. Second, note that the poles at
2Δϕ − hþ l − ν ¼ 0 in the numerator of Eq. (7) give rise,
upon doing the ν integration, to the required single and
double spurious poles at s ¼ Δϕ. Finally, we observe that
the Mack polynomial defines, through

QΔ
l;0ðtÞ ¼

4l

ðΔ − 1Þlð2h − Δ − 1Þl
PðsÞ
Δ−h;l

�
s ¼ Δ − l

2
; t

�
;

ð10Þ
a single variable orthogonal polynomial (labeled by l
and explicitly expressible in terms of hypergeometric
functions) known as a continuous Hahn polynomial—see
Refs. [32,33] for details. They are the analogue of Legendre
polynomials in a partial wave expansion. This is a par-
ticularly nice feature of the Mellin expansion since it gives
us a way to decompose the residues in Eq. (4) in a natural
basis and impose the condition of vanishing on the
coefficients term by term. Moreover, what we have just
seen is that, in the s channel, a field of a given spin l only
contributes to the QΔ

l;0ðtÞ with the same l. Thus, we can
write this contribution to Eq. (5) as

qða;sÞΔ;l ðtÞ ¼ qða;sÞΔ;l Q
2Δϕþl
l;0 ðtÞ; ð11Þ

with qð2;sÞΔ;l ; qð1;sÞΔ;l being the coefficients of the constant and
the ðs − ΔϕÞ term from

qðsÞΔ;lðsÞ¼−
41−lΓðΔϕþsþl−hÞ2

ðlþ2s−ΔÞðlþ2sþΔ−2hÞΓð2sþl−hÞ;

ð12Þ
under a Taylor expansion around s ¼ Δϕ.
This was for the s channel, but we can add in the t and u

channels easily by an appropriate exchange of u, v
variables, which translates into exchanging the Mellin
variables with some shifts:

t channel∶ s → tþ Δϕ; t → s − Δϕ;

u channel∶ s → Δϕ − s − t; t → t: ð13Þ
We need to extract the corresponding contributions qða;tÞΔ;l0 ðtÞ
to the residues and decompose them in an expansion in the

same orthogonal basis of Q
2Δϕþl
l;0 ðtÞ. Now, however, a spin

l0 exchange in these channels will give a contribution in all

partial waves. With the change of variables explained
above, we have

MðtÞ
Δ;l0 ðs; tÞ ¼ MðsÞ

Δ;l0 ðtþ Δϕ; s − ΔϕÞ: ð14Þ
Now ρΔϕ

ðs; tÞ gives rise to the spurious poles, and thus we

just need to evaluateMðtÞ
Δ;l0 ðs; tÞ and its first order expansion

around s ¼ Δϕ to obtain qða;tÞΔ;l ðtÞ. Furthermore, the indi-

vidual contributions to the Q
2Δϕþl
l;0 ðtÞ expansion can be

picked out using their orthogonality properties. The end

results for qð2;tÞΔ;l ; q
ð1;tÞ
Δ;l are obtained, as before, by Taylor

expanding

cΔ;lq
ðtÞ
Δ;lðsÞ¼κlðsÞ−1

X
l0

cΔ;l0
Z

dtdνΓ2ðsþ tÞΓ2ð−tÞ

×μΔ;l0 ðνÞΩðtÞ
ν;l0 ðtÞPðtÞ

ν;l0 ðs−Δϕ;tþΔϕÞQ2sþl
l;0 ðtÞ
ð15Þ

around s ¼ Δϕ. Here, κlðsÞ is a normalization factor [33]

and PðtÞ
ν;l0 ðs; tÞ ¼ PðsÞ

ν;l0 ðt; sÞ. It can be shown straightfor-
wardly, using the properties of the continuous Hahn
polynomials, that the u channel gives an identical con-

tribution, i.e., qða;uÞΔ;l ¼ qða;tÞΔ;l .
The sum over the physical spectrum also includes the

identity operator (Δ ¼ l ¼ 0). It will be convenient to
separate out this piece. It gives a position space contribu-
tion toAðu; vÞ, which is ½1þ ðu=vÞΔϕ þ uΔϕ �. We will take
the corresponding Mellin amplitude to be given by the
poles that reproduce this power law behavior. Thus,

MΔ¼0;l¼0ðs; tÞ ¼ ρΔϕ
ðs; tÞ−1

�
1

st
þ crossed

�
; ð16Þ

where the crossed channels are obtained from the s channel
using Eq. (13). In this case, only the t and u channels
contribute to a spurious single pole at s ¼ Δϕ. The

contribution to Q
2Δϕþl
l;0 ðtÞ can be evaluated by using the

above amplitude and orthogonality. The answer is

qð1;tÞΔ¼0;l ¼ qð1;uÞΔ¼0;l ¼ −κlðΔϕÞ−1Q2Δϕþl
l;0 ð0Þ: ð17Þ

Thus, the simplest set of bootstrap equations [37] in
Mellin space readX
Δ≠0;l

cΔ;lðqð2;sÞΔ;l þ2qð2;tÞΔ;l Þ ¼ 0¼ 2qð1;tÞΔ¼0;l

þ
X
Δ≠0;l

cΔ;lðqð1;sÞΔ;l þ2qð1;tÞΔ;l Þ:

ð18Þ
We have an infinite number of equations, one for each l.
The first term corresponds to the vanishing of the log term
and the second to the spurious power law piece in position
space. Typically, the latter constraint determines the
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anomalous dimensions, and the former the OPE
coefficients.
Results.—The scalar ϕ4 theory in d < 4 has an interact-

ing fixed point in the IR known as the Wilson-Fisher
fixed point. This fixed point is accessible perturbatively in
an ϵ expansion where d ¼ ð4 − ϵÞ. The anomalous dimen-
sion of ϕ and ϕ2 are known up to ϵ5 order (see, e.g.,
Refs. [38,39]) while, for the higher spin operators, JðlÞ, the
result is known to ϵ4 order [20,40]. However, Feynman
diagram computations for OPE coefficients for the stress
tensor exchange have only been carried out to a couple of
low orders in ϵ. Here, we will apply the above bootstrap
procedure to the four point function of ϕ. We will also
assume the existence of a unique stress tensor with ðΔ ¼
d;l ¼ 2Þ as the lowest member of a tower of twist two
primaries JðlÞ of even spin l. By demanding the cancella-
tion of the spurious terms [33], we find Δϕ¼1−ðϵ=2Þþ
1
108

ϵ2þ 109
11664

ϵ3þOðϵ4Þ, Δϕ2¼2−2
3
ϵþ 19

162
ϵ2þOðϵ3Þ, which

reproduce three-loop Feynman diagram results. What is
nontrivial to obtain diagrammatically is the OPE coefficient
[41], with ϕ2 exchange, where we have a prediction
at Oðϵ2Þ.

C0

Cfree
0

¼ 1 −
1

3
ϵ −

17

81
ϵ2 þOðϵ3Þ: ð19Þ

Here, we have normalized the result with the free theory
OPE coefficient and have written C2

ϕϕϕ2 ¼ C0. The Oðϵ2Þ
result yields C0=Cfree

0 ≈ 0.457 on setting ϵ ¼ 1, as com-
pared to 0.553 from numerics [10]. One can go onto
studying the sector with higher spin currents JðlÞ in an
analogous fashion. We simply state the results (details to
appear in Ref. [27])

Δl ¼ d − 2þ lþ
�
1 −

6

lðlþ 1Þ
�
ϵ2

54
þ δð3Þl ϵ3 þOðϵ4Þ:

ð20Þ
We recover the known Oðϵ2Þ [3] and Oðϵ3Þ results [20]

δð3Þl ¼373l2−384l−324þ109l3ðlþ2Þ−432lðlþ1ÞHl

5832l2ðlþ1Þ2 ;

ð21Þ
where Hn denotes the harmonic number. We also have

Cl

Cfree
l

¼ 1þ ϵ2

54lðlþ 1Þ ½6ðlþ 1Þ−1 þ 2ðl2 þ l − 3ÞHl

− ðl − 2Þðlþ 3ÞH2l� þ Cð3Þl ϵ3; ð22Þ

where CΔl;l ¼ Cl. This is a completely new result. The
Oðϵ3Þ term can also be calculated case by case for any
given spin [27]. Specifically, this implies that the central
charge cT ¼ ½d2Δ2

ϕ=ðd − 1Þ2C2� is given by

cT
cfree

¼ 1 −
5ϵ2

324
−
233ϵ3

8748
þOðϵ4Þ: ð23Þ

WhileOðϵ2Þ is known (see, e.g., Ref. [42]), theOðϵ3Þ order
is new. If we put ϵ ¼ 1 and compare it with the 3D Ising
model numerical result, cT=cfree ¼ 0.946534ð11Þ, from
bootstrap [12], we get, with ϵ ¼ 1,

cT=cfree ≈ 0.957933; ð24Þ
which is a better estimate than what one gets from only the
Oðϵ2Þ part (∼0.98). Our Oðϵ3Þ explicit results for OPE
coefficients givesC4=Cfree

4 ¼ 1.07872 for ϵ ¼ 1. Numerical
bootstrap results for this coefficient are scarce and, as yet,
with undetermined errors [43]. Using the results in
Ref. [43], numerics yield 1.11345 [44]. In fact, the
Oðϵ2Þ results (22) as well as the Oðϵ3Þ results [27] show
that, as a function of l, Cl=Cfree

l exhibits a minimum at
l ¼ 4. It will be interesting to see whether a numerical
bootstrap has a similar feature.
Denoting the anomalous dimension of the higher spin

JðlÞ’s by γl and that of ϕ by γϕ, using our methods, it is also
possible to derive the following universal form for γl in the
limit l ≫ 1 for weakly coupled theories (with a small twist
gap and coupling g ≪ 1) in d dimensions:

γl − 2γϕ ¼
P∞

p¼0 αpðgÞðloglÞp
ld−2 ; ð25Þ

whose form agrees with Ref. [23], but our method gives
explicitly, for d ¼ 4 − ϵ (where g ¼ ϵ),

αpðϵÞ ¼ −
ϵ2þp

9p!

�
2

3

�
p
þOðϵ3þpÞ; ð26Þ

which can be cross-checked for p ¼ 0, 1 using Eq. (21).
The general p formula is a prediction. Notice that plugging
the leading order αp into Eq. (25) resums into

−ϵ2=ð9l2−2ϵ=3Þ ≈ −ϵ2=ð9lΔϕ2 Þ ¼ −ϵ2=ð9lτϕ2 Þ, where τO
is the twist of the operator O. This spin dependence and
the coefficient are in agreement with what would follow
from Ref. [21]. A similar analysis can be done for any
weakly coupled theory [27].
Our approach can also be used to get the leading

anomalous dimensions for the ϕ3 theory in six dimensions
and the ϕ6 theory in three dimensions [27], as well as the
results for OðNÞ [45], at both a fixed d and a large N, as
well as in the ϵ expansion. It will also be interesting to
extend our techniques to the theories being investigated
in Ref. [46].
Outlook.—The new approach to bootstrap that we have

outlined worked remarkably well for the Wilson-Fisher
fixed point, reproducing analytically known results and
producing new results for OPE coefficients. In contrast to
the complexity of higher loop Feynman diagram compu-
tations, with all of their divergences and regularizations,
our method yields finite, scheme independent physical
results with relative ease of calculation. The main reason
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for this efficacy is that, in all of the results that we have
discussed, the crossed channels involved, at most, the
identity operator and ϕ2, with other operators contributing
only at higher orders. This simplification does not occur in
the conventional approach to bootstrap [8]—there, one
typically needs to sum over an infinite set of operators [21],
even to produce results at leading order in ϵ at large spin
[47]. At higher orders this phenomenon is unlikely to
persist, and we will have to perhaps make use of the
additional spurious poles [37]. It is likely, however, that, in
the presence of a small parameter ½ϵ; ð1=lÞ; ð1=NÞ;…�, we
can always obtain the leading results analytically.
The conceptual suggestiveness of the present approach

lies in the AdSdþ1 Feynman diagramlike expansion. When
combined with the Mellin representation, this holds out the
tantalizing possibility of deciphering a dual string theory
interpretation for CFTs, at least where a largeN limit exists.
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