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Topological orders can be used as media for topological quantum computing—a promising quantum
computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often
regarded as a quantum computing device for special purposes, also offers a way of characterizing
topological orders. Here, we show how to identify distinct topological orders via measuring their modular S
and T matrices. In particular, we employ a nuclear magnetic resonance quantum simulator to study the
properties of three topologically ordered matter phases described by the string-net model with two string
types, including the Z2 toric code, doubled semion, and doubled Fibonacci. The third one, non-Abelian
Fibonacci order is notably expected to be the simplest candidate for universal topological quantum
computing. Our experiment serves as the basic module, built on which one can simulate braiding of non-
Abelian anyons and ultimately, topological quantum computation via the braiding, and thus provides a new
approach of investigating topological orders using quantum computers.
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Introduction.—Beyond the Landau-Ginzburg paradigm
of symmetry breaking, topologically orders describe gapped
quantum phases of matter with a myriad of properties
depending only on the topology but not of any microscopic
details of the host system [1–5]. These properties are thus
robust against local perturbations. Two such properties are a
finite set of degenerate ground states and a corresponding
set of gapped (non-Abelian) anyon excitations [6,7]. While
the former may lead to a robust quantum memory [8],
the latter may form a logical space that supports quantum
computation via the unitary braiding of the anyons
[6,9–11]. This architecture of quantum computation is
called topological quantum computation (TQC), because
the ground states, anyons, and braiding operations are
nonlocal by nature and hence are invulnerable against local
errors. The most promising and simplest candidate topo-
logical order for universal TQC is the Fibonacci order
[10,11], which bears a non-Abelian anyon species τ, and the
braiding operations of two or more τ’s form a universal set
of unitary gates.
The potential, paramount applications of topological

orders urges studies of topological orders in real systems.
Rather than directly realizing a topological order in a real
system, simulating it on a quantum computer offers an
alternative means of investigating topological orders, where
the first step is naturally to identify distinct topological
orders. A topological order has three key features:

topology-protected ground state degeneracy (GSD), finite
number of anyon types, and topological properties of the
anyons [12]. Particularly, the third characteristic, topologi-
cal properties of the anyons, includes the self-statistics,
braiding, and fusion of the anyons. The self-statistics of an
anyon can be a fraction, recorded by the modular T matrix
of a topological order, which in a proper basis is diagonal.
Meanwhile, the braiding of two anyons can be captured
by an observable called the S-matrix. The fusion of two
anyons is an interaction that produces other (not necessarily
different) anyons in the topological order, which is also
captured by the S matrix. Therefore, two distinct topologi-
cal orders with the same GSD can still be distinguished by
comparing their modular T and S matrices [7,13–16].
In this work, we consider the string-net model, also

known as the Levin-Wen model [12], with only two
string types. In this case, the model describes only three
topological orders. The first two are the Z2 toric code
and doubled semion order, which are Abelian topological
orders. The third is the doubled Fibonacci order, which is
non-Abelian and the candidate for universal TQC. As these
three topological orders possess the same GSD on a torus,
we need to identify them via their modular matrices.
In experiment, we simulate each of the three topological
orders on a nuclear magnetic resonance (NMR) quantum
simulator [17–22] and measure its modular transformation
ST−1 as a whole. As each of the three topological orders
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possess a unique ST−1, we have thus identified all three
topological orders of the string-net model in practice,
and our experiment opens up a new way of identifying
topological orders using quantum simulators.
String-net model.—String-net models are exactly solv-

able, infrared fixed point, effective models of topological
orders in two spatial dimensions [12]. A string-net model is
specified by a set of input data: string types fi; j; k;…g,
fusion rules fNk

ij ∈ Z≥0g, and a Hamiltonian H, all defined
on the honeycomb lattice [Fig. 1(a)]. The strings are the
fundamental degrees of freedom of the model, and each edge
of the lattice has a unique string type, which can evolve under
the Hamiltonian. For example, strings may be thought as
spins living on the edges of the lattice. A fusion rule Nk

ij is
defined on a vertex where the three incident edges of the
string types i, j, and k, via the equation i × j ¼ P

kN
k
ijk, in

which the non-negative integers Nk
ij are fusion coefficients.

In this work, we deal with the cases where the strings are
self-dual, i.e., i ¼ i� for all string type i’s, and Nk

ij ∈ f0; 1g
only. The Hamiltonian of this model reads

H ¼ −
X
v

Av −
X
p

Bp; ð1Þ

where the sums are, respectively, over all the vertices and
plaquettes of the honeycomb lattice. It turns out that all theAv
and Bp operators commute with each other, which renders
the model exactly solvable. More importantly, all these
operators are projectors and thus have eigenvalues either
zero or one. We direct readers to the Supplemental Material
for a detailed description of the string-net model [23].
Given a set of input data of the string-net model, the

degenerate ground states, anyon excitations, and modular T
and Smatrices form the set of output data, which character-
izes a specific topological order based on the input data.
Minimal honeycomb lattice on a torus.—On a torus, as

far as ground states are concerned, one can always shrink
the lattice to the minimal honeycomb lattice with merely
three edges, two vertices, and one plaquette as shown in
Fig. 1 by the so called F moves [12,23,27,28]. The total
Hilbert space is spanned by the basis states j123i, where the
numbers label both the edges and the string types carried,
respectively, on the edges. These basis states are ortho-
normal: h102030j123i ¼ δ1;10δ2;20δ3;30 . The next step is to
find the matrix form of the string-net Hamiltonian in Eq. (1)

on this minimal honeycomb lattice. As we are only
concerned about the ground states, we can set Av ¼ 1 at
both vertices of the minimal lattice. The only nontrivial part
of the Hamiltonian is thus Bp on the sole plaquette.
We can derive that the matrix elements of Bp are [23]

h100200300jBpj123i

¼ 1

D

X
s;10;20;30

dsF123
s3020F

231
s1030F

30120
s20010F

30102
s20100F

2003010
s100300 F

1002030
s300200 : ð2Þ

Here, the strings 10, 20, and 30 being summed over are those
in the intermediate states, and s represents an average over
all possible string types associated with the action of Bp.

Fijm
kln are the F symbols, which for the case with κ string

types, are a collection of κ6 complex numbers determined
by the fusion rules. The quantity di ¼ Fii0

ii0, where
0 ≤ i ≤ κ − 1, is defined as the quantum dimension (not
the actual dimension of any Hilbert space but a convenient
notation) of the string type i. Since the quantum dimensions
di are defined by the F-symbol normalization, one may
instead specify the quantum dimensions as part of a set of
input data. In our setting, all F symbols are real and κ ¼ 2.
When κ ¼ 2where a string can precisely be simulated by

a qubit, Bp is an 8 × 8 real matrix, and so is the entire
Hamiltonian. Meanwhile, there are three and only three
possible sets of fusion rules, each of which gives rise to a
string-net Hamiltonian describing a distinct topological
order [23]. In the following, we only list the defining facts
and topological properties of the three topological orders
for κ ¼ 2 but leave certain details such as the matrix forms
of the Hamiltonian to the Supplemental Material [23]. For
each topological order, the types of anyons, basis of the
ground states, and T and S matrices are shown in Table. I.
1.Z2 toric code. The input data include two string types 0

and 1, fusion rules 0 × 1 ¼ 1 and 1 × 1 ¼ 0, and quantum
dimensions d0 ¼ d1 ¼ 1. The ground state space is four
dimensional on the torus. The four types of anyons are 1, e,
m, and ϵ, where e andm are self-bosons butmutual fermions,
and ϵ is a fermion. The set of output data characterizes theZ2

toric code, which is an Abelian topological order.
2. Doubled semion. The input data set of this topological

order differs from that of theZ2 toric code by d1 ¼ −1. The
four types of anyons are 1, s, s, and ss, among which s and
s are semions. A semion may be thought as a half fermion
because its statistics is i instead of −1. The set of output
data characterizes the doubled semion order, which is also
an Abelian topological order.
3. Doubled Fibonacci. We still have two string types 0

and 1, with, however, a new fusion rule 1 × 1 ¼ 0 × 1.
This fusion rule leads to a different set of F symbols, such
thatd0 ¼ 1 andd1 ¼ φ ¼ ð1þ ffiffiffi

5
p Þ=2, thegolden ratio. The

four types of anyons are 1, τ, τ, and ττ, respectively. The
anyon τ is called the Fibonacci anyon because the dimension
of the Hilbert space of n τ’s grows as the Fibonacci sequence
with n [11]. The anyon τ is the same as τ except that it has an

FIG. 1. (a) Honeycomb lattice on a torus. For the sake of
ground states only, this can always be simplified into (b) the
minimal honeycomb lattice on a torus: three edges (strings)
labeled by 1, 2, and 3, two trivalent vertices, and one plaquette—
the entire torus.
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opposite self-statistics. So, the anyon ττ is a bound state of τ
and τ. This is why the output topological order is called the
doubled Fibonacci. The fusion of two Fibonacci anyons is
τ × τ ¼ 1þ τ; hence, the Hilbert space of two Fibonacci
anyons is two dimensional and can be identified as the space
of a logical qubit. The more Fibonacci anyons excited, the
larger the logical space. The Fibonacci anyons are non-
Abelian, whose braiding fabricates unitary quantum gates
well suited for universal TQC [10,11].
Experimental implementation.—Our goal is to simulate

the above three topological orders by 1) preparing their
ground states, 2) performing the modular transformation on
the virtual minimal honeycomb lattice, and 3) measuring
the modular matrices that can uniquely distinguish the
three topological orders. Here, we show how we would
perform the modular transformations. It turns out that on
the honeycomb lattice on a torus, T and S matrices cannot
be simultaneously measured; however, it is shown that a
π=3 rotation of the lattice about the axis perpendicular to
the lattice surface is equivalent to performing the combined
modular transformation ST−1 [29]. What is crucial is that
the three topological orders possess distinct matrices ST−1

and, thus, can be distinguished by measuring these matri-
ces. Hence, we just need to know how a π=3 rotation acts
on the ground states of a topological order. On a torus, a
π=3 rotation transforms the minimal honeycomb lattice
as depicted in Fig. 2. It is easy to see that the rotation
cyclically permutes the three edges by 1 → 2 → 3 → 1.
Consequently, the rotation transforms any state by
je1e2e3i → je3e1e2i, implying that one can then apply
this permutation operation to the three bases of ground
states and generate three new bases. Having done this, it is
then straightforward to show that the inner product between

the new and original bases reproduces the modular matrices
ST−1. In our experiment, the effect of the π=3 rotation, i.e.,
the cyclic permutation 1 → 2 → 3 → 1, is implemented by
two SWAP gates, SWAP12 and SWAP23.
Our 3-qubit system is represented by the 13C-labeled

trichloroethylene (TCE)molecule dissolved in d-chloroform
[30]. The sample consists of two 13C’s and one 1H, as shown
in Fig. 3. All parameters of the molecule are listed in the
table of Fig. 3, and all experiments are carried out on a
Bruker DRX 700 MHz spectrometer at room temperature.
Each experiment of simulating a given topological order

was divided into the following three steps. Certain details
can be found in the Supplemental Material [23].
1) Prepare the ground states. We first created a pseudo-

pure state (PPS) [31] with the experimental fidelity over

TABLE I. Anyon types, the basis of the ground states, and modular matrices T and S for the three topological orders: Z2 toric code,
doubled semion, and doubled Fibonacci, of the minimal honeycomb lattice on a torus. With respect to the T and Smatrices, the rows and
columns are in the order of the anyon types listed in the second column. For the non-Abelian doubled Fibonacci order, the parameter
φ ¼ ð1þ ffiffiffi

5
p Þ=2, the golden ratio.

Topo Orders Anyons Basis of the Ground States Modular Matrices

Z2 toric code 1 e W1 ¼ ðj000i þ j011iÞ=2, We ¼ ðj000i − j011iÞ=2, T ¼ Diagf1; 1; 1;−1g
m ε Wm ¼ ðj101i þ j110iÞ=2, Wε ¼ ðj101i − j110iÞ=2.

S ¼ 1
2

0
BB@

1 1 1 1

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

1
CCA

Doubled semion 1 s W1 ¼ ðj000i þ j011iÞ=2, Ws ¼ ðj101i þ ij110iÞ=2, T ¼ Diagf1; i;−i; 1g
s̄ ss̄ Ws̄ ¼ ðj000i − j011iÞ=2, Wss̄ ¼ ðj101i − ij110iÞ=2.

S ¼ 1
2

0
BB@

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

1
CCA

Doubled Fibonacci 1 τ W1 ¼ ðj000i þ j011iÞ= ffiffiffi
5

p
φ, T ¼ Diagf1; eið4π=5Þ; e−ið4π=5Þ; 1g

τ̄ ττ̄ Wτ ¼ ðj101i þ e−ið4π=5Þj110i þ ffiffiffi
φ

p
eið3π=5Þj111iÞ= ffiffiffi

5
p

φ,

S ¼ 1ffiffi
5

p
φ

0
BB@

1 φ φ φ2

φ −1 φ2 −φ
φ φ2 −1 −φ
φ2 −φ −φ 1

1
CCA

W τ̄ ¼ ðj101i þ eið4π=5Þj110i þ ffiffiffi
φ

p
e−ið3π=5Þj111iÞ= ffiffiffi

5
p

φ,

Wττ̄ ¼ ðφ2j000i − φj011i þ φ2j101i þ φ2j110i þ ffiffiffi
φ

p j111iÞ= ffiffiffi
5

p
φ.

2

(a)

3 rotation

counterclockwise
3

(b)

FIG. 2. (a) Honeycomb lattice with periodic boundary con-
dition on the unit cell (green region) consisting of three edges 1,
2, and 3. This is in fact the minimal honeycomb lattice on a torus
in Fig. 1. (b) Unit cell (yellow region) obtained from (a) by a π=3
rotation counterclockwise.
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0.99, and then prepared it into one of the ground states for
Z2 toric code, doubled semion, and doubled Fibonacci
order as shown in Table. I, respectively. Ground-state
preparation is realized by the gradient ascent pulse engi-
neering (GRAPE) optimizations [32,33], with each pulse
10 ms. Denote each ground state of the currently simulated
topological order as jϕii (1 ≤ i ≤ 4).
2) Perform the modular transformation. For each of the

four ground states jϕii, we apply two SWAP gates between
qubit 1 and 2, and then qubit 2 and 3, to cyclically permute
the three qubits. They were optimized by the GRAPE
technique with pulse durations of 20 ms. It is equivalent to
performing the modular transformation (π=3 rotation) on
the torus of the minimal honeycomb lattice. Denote each
new ground state of the currently simulated topological
order as jψ ii (1 ≤ i ≤ 4).
3) Measure the ground states before and after the

modular transformation. To acquire the ST−1 matrix in
experiment, we need to calculate the inner products
between the original and new ground states. A full state
tomography was implemented before and after the modular
transformations, to obtain the information of the original
ground states jϕii and new ground states jψ ii, respectively.
Note that the state tomography inevitably leads to mixed

states in experiment for the sake of experimental errors. To
calculate the inner products of the two ground states, it is
necessary to purify the measured density matrices to pure
states. This purification step was realized by the maximum
likelihood method [34], and say jϕexp

i i and jψ exp
i i were

found to be the closest to our experimental density
matrices. As a result, each element in the experimentally
reconstructed ST−1 matrix was

ST−1
ij ¼ hϕexp

i jψ exp
j i; ð3Þ

from which the entire ST−1 could be reconstructed.
In Fig. 4, all the ST−1 matrices of the Z2 toric code,

doubled semion, and doubled Fibonacci topological orders
are illustrated. The real parts of ST−1 are displayed in
the upper row, and the imaginary in the lower row. In
each figure, the transparent columns stand for the theo-
retical values, and the colored stands for the experimental
results. From the figure, we conclude that our experiment
matches well with the theoretical predictions, and each
topological order is indeed identified clearly from its
measured ST−1 matrix.

We also calculated the average fidelity [35] between the
theoretical ST−1 matrix and the experimental one. For the
non-Abelian doubled Fibonacci topological order, the aver-
age fidelity is 0.983� 0.005, while for the other twoAbelian
topological orders Z2 toric code and doubled semion, the
average fidelities are 0.993� 0.002 and 0.992� 0.003,
respectively. This provides another evidence that we have
successfully identified distinct topological orders with high
confidence using our quantum simulator.
We clarify that state tomography is not necessary in

measuring the modular matrices of topological orders, if an
ancilla qubit is involved and the modular transformations
are modified correspondingly [36]. To guarantee the
experimental precision, in this work, we used a three-qubit
simulator and implemented full state tomography. For how
to measure the modular matrices in a tomography-free way,
see the Supplemental Material [23].
Discussion.—TQC is undoubtedly a very promising

scheme of quantum computing, which requires the engineer-
ing ofHamiltonianswithmany-body interactions. Because of
the notorious difficulties in engineering such Hamiltonians
experimentally, most of the preliminary experiments towards
TQC adopted a state preparation approach [37] to demon-
strate the exotic properties of anyons, such as the fractional
statistics [38–41] or path independence [42]. Each exper-
imental platform has its own advantages and drawbacks. For
example, the photonic system [38,39] has genuine entangle-
ment, but generates the states probabilistically which is
inefficient; the NMR system [40,42] has good controllability,
but it is lack of entanglement and scalability; the super-
conducting circuit [41] is a solid-state system with genuine
entanglement, but it requires extremely low temperature. In
addition, the state preparation approach [37] just provides a
way tomimic anyonic properties, which is not suited to verify
the robustness of TQC. Recently, four-body ring-exchange
interactions and anyonic excitations were observed in ultra-
cold atoms [43], which is an essential step towards the
realization of TQC.
The experiments mentioned above account for the toric

code only, which is Abelian. Universal TQC nonetheless

FIG. 3. Molecule structure of TCE, where one 1H and two 13C’s
forma three-qubit system.The table on the right lists the parameters
of chemical shifts (diagonal, Hz), J-coupling strengths (off
diagonal, Hz), and relaxation time scales T1 and T2 (second).
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requires non-Abelian anyons, for the Fibonacci order as the
simplest example. Our work is by far the first experimental
measurement of themodularmatrices of topological orders, in
particular, non-Abelian topological orders, and thus opens up
away tomeasuremodularmatricesusingquantumsimulators.
Conclusion.—Echoing the equivalence between the

quantum circuit scheme and the topological quantum
computation scheme, on a NMR quantum simulator, we
successfully identify the doubled Fibonacci topological
order, which is a promising candidate for topological
quantum computation. Since the doubled Fibonacci order
is one of the three topological orders described by the
string-net model with two string types, using the same
system, we also identify the other two topological orders,
i.e., the Z2 toric code and the doubled semion. Our
simulator can serve as a basic module for simulating the
dynamical properties—in particular, braiding and edge
effects—of these topological orders.
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