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Machine learning is a fascinating and exciting field within computer science. Recently, this excitement
has been transferred to the quantum information realm. Currently, all proposals for the quantum version of
machine learning utilize the finite-dimensional substrate of discrete variables. Here we generalize quantum
machine learning to the more complex, but still remarkably practical, infinite-dimensional systems. We
present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-
variable quantum computer that can lead to exponential speedups in situations where classical algorithms
scale polynomially. Finally, we also map out an experimental implementation which can be used as a
blueprint for future photonic demonstrations.
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Introduction.—We are now in the age of big data [1], an
unprecedented era in history where storing, managing, and
manipulation of information is no longer effective using
previously techniques. To compensate for this, one impor-
tant approach in manipulating such large data sets and
extracting worthwhile inferences is by utilizing machine
learning techniques. Machine learning [2,3] involves using
specially tailored “learning algorithms” to make important
predictions in fields as varied as finance, business, fraud
detection, and counterterrorism. Tasks in machine learning
can involve either supervised or unsupervised learning and
can solve such problems as pattern and speech recognition,
classification, and clustering. Interestingly enough, the
overwhelming rush of big data in the past decade has also
been responsible for the recent advances in the closely
related field of artificial intelligence [4].
Another important field in information processing which

has also seen a significant increase in interest in the past
decade is that of quantum computing [5]. Quantum com-
puters are expected to be able to perform certain computa-
tions much faster than any classical computer. In fact,
quantum algorithms have been developed which are expo-
nentially faster than their classical counterparts [6,7].
Recently, a new subfield within quantum information has
emerged combining ideas from quantum computing with
artificial intelligence to form quantum machine learning [8].
These discrete-variable schemes have observed a perfor-

mance that scales logarithmically in the vector dimension,
such as supervised and unsupervised learning [9], support
vector machine [10], cluster assignment [11], and others
[12–18]. Initial proof-of-principle experimental demonstra-
tions have also been performed [19–22]. It was mentioned in
Ref. [23] that certain caveats apply to quantum machine
learning. However, since then, these caveats (relating to

sparsity, condition number, epsilon precision, and quantum
output) have been closed or applications found where they
are not a concern; cf. [8,10,18,24].
In this Letter, we have developed learning algorithms

based on a different, but equally important, type of
substrate in quantum computing, those of continuous
variables (CVs) [25,26]. A CV system is characterized
by having an infinite-dimensional Hilbert space described
by measuring variables with a continuous eigenspectra. The
year 1999 saw the first important attempt at developing a
CV model of quantum computing [27]. Seven years later,
the cluster state version [28] of CVs [29,30] accelerated the
field due to experimental interest. The result were proof-of-
principle demonstrations [31–34], which culminated in
a time domain one-million-node cluster [35,36] and a
60-node frequency domain cluster [37]. Further important
theoretical work was also carried out [38–47], including an
important CV architecture that was fault tolerant [48].
Here, we take advantage of the practical benefits of CVs

(high-efficiency room-temperature detectors, broad band-
widths, and large-scale entanglement generation) by
generalizing quantum machine learning to the infinite
dimension. Specifically, we develop the important CV
tools and subroutines that form the basis of the quantum
speedup. This includes matrix inversion, principal compo-
nent analysis, and vector distance. Furthermore, each of
these crucial subroutines are given a finite squeezing
analysis for future experimental demonstrations along with
a suggested photonic implementation.
Quantum machine learning for continuous variables.—

The general quantum state of an n-mode system is given by
jfi ¼ R

fðq1;…; qnÞjq1i ⊗ …jqnidq1…dqn. If we use
this state to encode a discrete set of classical data,
a≡ fax; x ¼ 1;…; Ng, which requires at least N classical
memory cells, only n ¼ logdN modes are sufficient, i.e.,
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faðq1;…; qnÞ ¼
XN
x¼1

ax
Yn
i¼1

ψxiðqiÞ; ð1Þ

where d is the number of basis states in each mode;
x ¼ ðx1x2…xnÞ is a d-nary representation of x; ψ jðqÞ≡
hqjψ ji for j ¼ 1;…; d is the wave function of the jth single
mode basis state, jψ ji. Here we assume the vector a is
normalized.
Obtaining the classical value of each data ax still requires

OðNÞ copies of jfai. Nevertheless, in some applications
only the global behavior of the data set is interesting. For
example, the value hfajF̂jfai can be computed efficiently
by a quantum computer with significantly fewer copies of
jfai [23]. Quantum machine learning algorithms take
advantage of this property to reduce the amount of memory
and operations needed.
If the data set a is sufficiently uniform, it is known that

jfai can be efficiently generated. As an illustration, we
outline in Supplemental Material [49] an explicit protocol
to generate a state with d ¼ 2 coherent basis states,
jψ1i ¼ jαi, and jψ2i ¼ j − αi. Our protocol generalizes
the discrete variable method in Ref. [50] to CV systems by
utilizing the CV implementation of the Grover operator,
eiϕjψihψ j for any given jψi, as well as the efficient generation
of cat states and coherent states [51].
The encoding state construction of general nonuniform

data could be constructed by extending the discrete-
variable quantum RAM (qRAM) [52] to a CV system or
by using a hybrid scheme [53], although the state gen-
eration efficiency of such a general encoded state remains
an open question [23,54]. Nevertheless, the versatility of
CV machine learning is not limited to processing classical
data sets that involve a discrete number of data. In the
context of universal CV quantum computation, the output
of a computer is a CV state that evolves under an
engineered Hamiltonian [27]; the wave function of such
a full CVoutput cannot be expressed in the form of Eq. (1).
As we will see, the CV machine learning subroutines are
capable of processing even full CV states and, therefore,
have certain problems that they are more suited to than
qubits [55].
In both the data state construction and the quantum

machine learning operation, the generalized Grover oper-
ator eiρ

0t plays the main role of inducing a phase shift
according to an ensemble of unknown given states ρ0. As
suggested in Ref. [11], such an operation can be imple-
mented by repeatedly applying the exponential swap
operation and tracing out the auxiliary mode, i.e.,

trρ0 ðeiδtSρ ⊗ ρ0e−iδtSÞ ¼ eiδtρ
0
ρe−iδtρ

0 þOðδ2Þ; ð2Þ

where by definition the swap operator functions as
Sjψ1ijψ2i ¼ jψ2ijψ1i.

Here we outline the procedure of implementing the
exponential operator with standard CV techniques. First
of all, we need a qubit as control, which can be imple-
mented by two auxiliary modes 1 and 2, with one and only
one photon in both modes; i.e., the state of the modes is
cos θj01i þ i sin θj10i. The rotation angle θ is controllable

by applying the rotation operator RðθÞ≡ eiθðâ1â
†
2
þâ†

1
â2Þ,

which can be implemented by linear optics [51]. In
addition, we need a controlled-swap operation

Ccc0
S ¼ e−ðπ=4Þðâcâ

†
c0−â

†
câc0 Þeiπâ

†
1
â1â

†
câceðπ=4Þðâcâ

†
c0−â

†
câc0 Þ; ð3Þ

which swaps the modes c and c0 depending on the photon
number of the control qubit. The operations in Ccc0

S can be
implemented with the quartic gate introduced in
Refs. [38,47]. See Supplemental Material [49] for more
detail.
The control qubit is first prepared in jþi≡ ðj01iþ

j10iÞ= ffiffiffi
2

p
. By applying the operations in sequence

expðiθSÞ ¼ Ccc0
S RðθÞCcc0

S , the state becomes

Ccc0
S RðθÞCcc0

S jþijψicjϕic0
¼ jþieiθScc0 jψicjϕic0
≡ jþiðcos θjψicjϕic0 þ i sin θjϕicjψic0 Þ: ð4Þ

The method can be generalized to implement a multimode
exponential swap, expðiθScc0Sdd0…Þ, by applying
Ccc0
S Cdd0

S …RðθÞCcc0
S Cdd0

S …. We note that the precious
resources of a single photon state are not measured or
discarded, so it can be reused in future operations.
We emphasize that, in stark contrast to the proposed

implementation of the exponential-swap gate in Ref. [11],
which is logical and thus composed by a series of discrete
variable logic gates, our implementation of the exponential-
swap gate is physical; i.e., it can be applied to full CV states
that could not be written as the discrete variable form in
Eq. (1). This property allows our subroutine to be applied
in, e.g., quantum tomography of CV states, which is more
complicated than the discrete variable counterparts due to
the large degree of freedom.
CV quantum machine learning algorithms.—We now

discuss several key subroutines (matrix inversion, principal
component analysis, and vector distance) that power the
quantum machine learning problems using the tools we
have just introduced.
a. Matrix inversion.—Various machine learning appli-

cations involves high-dimensional linear equations, e.g.,
Ay ¼ b. The advantage of some quantummachine learning
algorithms is the ability to solve linear equations efficiently.
Specifically, for any vector b ¼ P

ibiei, computing the
solution vector y ¼ A−1b ¼ P

ibi=λiei is more efficient on
a quantum computer [12].
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In a CV system, the algorithm starts by preparing the
state jbi and two auxiliary modes in the q quadrature
eigenstates, i.e., j0iq;R and j0iq;S. We apply the operator
expðiδγAp̂Rp̂SÞ 1=δ times. Each operator can be imple-
mented based on Eq. (2) and a modified exponential swap
gate with the rotation operator in Eq. (4) replaced by the
four-mode operator

Rðγp̂Rp̂SÞ ¼ eiγp̂Rp̂Sðâ1â†2þâ†
1
â2Þ; ð5Þ

which can be implemented efficiently [38]. The state then
becomes

eiγAp̂Rp̂S jbij0iq;Rj0iq;S ¼
X
i

bi

Z
jeiijpip;Rjγλipiq;Sdp;

ð6Þ
where we have neglected a normalization constant. If the S
auxiliary mode is measured in the q quadrature with
outcome qS, then we getX

i

bi=λijeiijqS=γλiip;R: ð7Þ

Up to the normalization, the solution state jyi ¼P
ibi=λijeii is obtained if the R auxiliary mode is

measured in the q quadrature, and we get the result qR ¼ 0.
In the infinitely squeezed case, in which the operation is

errorless, the successful rate of the last measurement is
vanishing. In practice, however, we can employ squeezed
vacuum states as auxiliarymodes if we permit a small error ϵ.
The successful rate of obtaining an answer state then scales as
Oðϵ3=2Þ, which is comparable to the discrete-variable algo-
rithm that has successwhich scales asOðϵÞ [10]. The detailed
argument is shown in Supplemental Material [49].
b. Principal component analysis.—The next problem is

to find the eigenvalue λ corresponding to a unit eigenvector
ei with respect to the matrix A, i.e., Aei ¼ λiei. This
problem is ubiquitous in science and engineering and can
also be used in quantum tomography, supervised learning,
and cluster assignment.
The algorithm starts from a data state jeii and an

auxiliary mode R prepared as the zero eigenstate of the
q quadrature, j0iq;R. The idea of the algorithm is to apply
the operator eiγAp̂R that displaces the auxiliary mode
according to the eigenvalue, i.e.,

eiγAp̂R jeiij0iq;R ¼ jeiieiγλip̂R j0iq;R ¼ jeiijγλiiq;R; ð8Þ

and then the eigenvalue can be obtained by measuring the
auxiliary modewith homodyne detection. This operator can
be implemented by preparing an ensemble such that the
density matrix is ρ0 ¼ A=trA and repeatedly applying the
techniques in Eq. (2) to implement eiδAp̂R , for γtrA=δ
times. Here the argument of the exponential swap operator
is not a c number but an operator p̂R. This can be

implemented by replacing the rotation operator in
Eq. (4) by the three-mode operator

Rðp̂RÞ ¼ eiδp̂Rðâ1â†2þâ†
1
â2Þ; ð9Þ

which can be efficiently implemented by a cubic phase gate
and linear optics [27,38].
In practice, the success of the algorithm relies on the

distinguishability of jγλiiq, which depends on the spectrum
of eigenvalues, the degree of squeezing s of the auxiliary
state, and the magnitude of the error. In Supplemental
Material [49], we have shown that Oð1=ϵÞ operations are
needed for an error ϵ≲ 1=ðγ2sÞ.
c. Vector distance.—In supervised machine learning,

new data are categorized into groups by their similarity to
the previous data. For example, the belonging category of a
vector u is determined by the distance D to the average
value of the previous data fvig. The objective of a quantum
machine learning algorithm is to compute the value
D2 ≡ ju −

P
M
i¼1 vi=Mj2.

Following the approach given in Ref. [10], we assume an
oracle can generate the state

jΨi ¼ 1

N

�
jujj0iIj ~ui þ

1ffiffiffiffiffi
M

p
XM
i¼i

jvijjiiIj~vii
�
; ð10Þ

where the first mode is denoted as the index mode I; the
normalization N ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

juj2 þP
ijvij2=M

p
is supposed to be

known. D2 can be obtained by conducting a swap test on
the index mode with a reference mode prepared as
jΦiR ≡ ðj0iR −

P
M
i¼1 jiiR=

ffiffiffiffiffi
M

p Þ= ffiffiffi
2

p
. Various swap tests

for CV systems have been proposed where the result is
obtained from a photon number measurement [56,57]. Here
we propose a swap test that employs only homodyne
detection and an exponential swap operation.
We consider two test modes that are prepared in the

coherent states jβi1j0i2. The operator exp½iðπ=4ÞS12SIR� is
applied to exponential swap the two test modes, as well as
the reference and the index modes. After that, the test
modes pass through a 50=50 beam splitter. The density
operator of the test modes after tracing out the other modes
becomes

ρ12¼
1

2

����� βffiffiffi
2

p
�

11

�
βffiffiffi
2

p
����þiD2

���� βffiffiffi
2

p
�

11

�
−βffiffiffi
2

p
����

−iD2

����−βffiffiffi
2

p
�

11

�
βffiffiffi
2

p
����þ

����−βffiffiffi
2

p
�

11

�
−βffiffiffi
2

p
����
�
⊗
���� βffiffiffi

2
p

�
22

�
βffiffiffi
2

p
����:

ð11Þ

We find that if the 1 mode is homodyne detected in the p
quadrature and β ≳ 4, the probability difference of meas-
uring a positive and negative outcome scales as D2, where
the scaling constant is at the order of 0.1 for a wide range of
β. See Supplemental Material [49] for further details.
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All-photonic implementation.—We outline an all-
photonic implementation of the previously mentioned
machine learning algorithms. First, one must create an
ancillary state for use in the exponential swap gate. One
method is to provide a heralded ancilla via parametric
down-conversion (see, for example, [51], for a background).
The undetected photon is interfered with the vacuum on a
50=50 beam splitter in order to place it in the superposition
required for Eq. (4) (see Fig. 1). This serves as an input to the
phase-dependent gates outlined in Ref. [38], which can be
used to construct the exponential swap gate. The rotation
gate in Eq. (4) is essentially the interference of the two
modes on a variable reflectivity, or programmable beam
splitter, which can be achieved via polarization control and a
polarizing beam splitter or via a collection of phase or
amplitude modulators. Inverse phase-dependent gate oper-
ations are implemented after the rotation.
Each algorithm essentially utilizes a variation of this

configuration, in addition to the possibility of a squeezed
ancilla in order to increase the accuracy of the result. The
principal component analysis problem replaces the variable
beam splitter in the swap gate with a two-mode quantum-
nondemolition phase gate. It can be implemented by
treating the auxiliary mode R as the ancilla in the
phase-dependent gate. Thus, the principal component
analysis problem essentially relies on repeated application
of the “repeat-until-success” phase gate [38]. In a realistic
scenario, R is in a single-mode squeezed state with finite
squeezing (see Supplemental Material [49]), which is
experimentally straightforward using a below-threshold
optical parametric amplifier (OPA). Phase-sensitive ampli-
fication can also be used. The squeezing parameter can be
used to tune the accuracy of the computation. The final
homodyne detection is also experimentally straightforward
with a local oscillator derived from the pump laser used in
the OPA (via a doubling cavity, for instance).

The matrix inversion algorithm is experimentally very
similar to the eigenvalue problem. The key difference is the
use of an extra auxiliary mode, which can be prepared
independently with an additional OPA. The four-mode
operator is conceptually similar to the operator in Eq. (6)
used in the previous algorithm. Each auxiliary mode serves
as an ancilla in the phase-dependent gate, and the algorithm
otherwise follows a similar approach to the previous one,
with a final homodyne detection step for the amplitude
quadrature of each auxiliary mode, with the local oscillators
derived from the pumps of each OPA.
Finally, the vector distance algorithm requires use of a

swap test, which can be implemented via the application of
the exponential swap gate between two auxiliary states
(which can be coherent states or squeezed states) and the
oracle mode in Eq. (10) [10] and the reference mode. The
required homodyne detection of the phase quadrature of
the first test mode in a bright coherent state and is again
experimentally straightforward.
Discussion.—Our previous all-photonic implementa-

tions are difficult to do experimentally but are still within
the current reach of the latest technological achievements.
For instance, high rates of squeezing are now achiev-
able [58], along with the generation of cat states [59].
However, we note that our scheme is not limited to
photonic demonstrations but a variety of substrates, includ-
ing spin ensemble systems, such as trapped atoms and solid
state defect centers [60–63].
We hope that the work presented here will lead to further

avenues of research, especially since there has been a
substantial increase of results in discrete-variable machine
learning [14,64–66]. All of these would be interesting to be
generalized to continuous variables as future work.
Additionally, adapting our current work into the cluster-
state formalism [41] would also be interesting in order to
take advantage of state-of-the-art experimental interest and
the scalability that continuous variables can provide
[36,67]. Furthermore, we note another viable option that
uses a “best-of-both-worlds” approach to quantum infor-
mation processing, i.e., hybrid schemes [53,68,69]. It
would be interesting to adapt our scheme presented here
to such hybrid architectures.
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helpful discussions. H.-K. L. acknowledges support from
the Croucher Foundation. R. P. performed portions of
this work at Oak Ridge National Laboratory, operated
by UT-Battelle for the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.
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FIG. 1. All-photonic implementation schematic of the operator
expðiθSÞ ¼ Ccc0

S RðθÞCcc0
S . We initially have an ancillary input

mode jþi ¼ ðj01i þ j10iÞ= ffiffiffi
2

p
with two (swap) modes C and C0

used to implement the operators given in Eq. (4). The method for
generating jþi is one of many possibilities, e.g., preparing a
heralded superposition of polarization states is illustrated. χð2Þ,
nonlinear crystal source; APD, avalanche photodiode detector;
50=50, balanced beam splitter; λ=2, half wave plate; PBS,
polarizing beam splitter; CCC0

S , controlled-swap operator; RðθÞ,
rotation operator; see the text for an explanation of the operators.
Note that Ccc0

S can be implemented with the quartic gate [38,47]
and RðθÞ can be efficiently implemented using linear optics.
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