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We provide an analysis on non-Markovian quantum evolution based on the spectral properties of
dynamical maps. We introduce the dynamical analog of entanglement witness to detect non-Markovianity
and we illustrate its behavior with several instructive examples. It is shown that for several important
classes of dynamical maps the corresponding evolution of singular values and/or eigenvalues of the map
provides a simple non-Markovianity witness.
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Introduction.—Spectral theorem is one of the mathemati-
cal pillars of quantum theory [1]. This celebrated result of
von Neumann states that for any normal operator (i.e.,
AA† ¼ A†A) in the Hilbert space one has the corres-
ponding spectral decomposition A ¼ P

kakjϕkihϕkj with
complex ak and hϕkjϕli ¼ δkl. In particular, if A is not
only normal but also Hermitian then ak are real. Many
problems from quantum physics are directly related to
finding the spectrum fakg of some normal or Hermitian
operator.
In this Letter we apply some tools from spectral analysis

to study the evolution of an open quantum system. Such
systems provide a fundamental tool to study the interaction
between a quantum system and its environment, causing
dissipation, decay, and decoherence [2–4]. It is, therefore,
clear that open quantum systems are important for quantum-
enhanced applications, as both entanglement and quantum
coherence are basic resources in modern quantum technol-
ogies, such as quantum communication, cryptography, and
computation [5].
Recently, much effort has been devoted to the description,

analysis, and classification of non-Markovian quantum
evolution (see, e.g., recent review papers [6–8]). In analogy
to entanglement theory [9] several non-Markovianity mea-
sures were proposed that characterize various concepts of
non-Markovianity. The two most influential approaches to
non-Markovian evolution are based on divisibility of
dynamical maps [10,11] and distinguishability of states
[12] (for other approaches see also [13–19]). The results we
present in this Letter allow us to introduce for the first time a
witness of non-Markovianity in the same spirit of entangle-
ment witnesses. An entanglement witnessmethod applied to
the Choi-Jamiolkovski state of a quantum channel was
recently developed [20] in order to detect properties based
on convexity features. The method was tested experimen-
tally for entanglement breaking channels and for separable
random unitary channels [21].

Besides the fundamental interest, our approach simpli-
fies, in certain cases, the experimental detection of non-
Markovianity of a dynamical map.
Let us recall that a dynamical map Λt is CP divisible

if for any t > s one has Λt ¼ Vt;sΛs, with Vt;s being
completely positive. We call quantum evolution Markovian
if the corresponding dynamical map is CP divisible.
Recently, this notion was refined as follows [22]: Λt is k
divisible if Vt;s is k positive. In particular, 1-divisible maps
are called P divisible (Vt;s is positive). Maps that are even
not P divisible are called essentially non-Markovian. These
types of dynamical maps have been recently simulated and
detected experimentally [23].
Note that CP divisibility is a mathematical property of

the map. Another approach more operationally oriented is
based on distinguishability of quantum states [12]: accord-
ing to [12] the evolution is Markovian if

d
dt

∥Λt½ρ1 − ρ2�∥1 ≤ 0; ð1Þ

for any pair of initial states ρ1 and ρ2. Actually, assuming
that Λt is invertible one shows [22] that Λt is k divisible
if ðd=dtÞ∥ð1k ⊗ ΛtÞ½X�∥1 ≤ 0, for all Hermitian X ∈
MkðCÞ ⊗ BðHÞ [MkðCÞ denotes k × k complex matrices
and BðHÞ bounded operators in H]. Note that if k ¼ 1 and
X ¼ ρ1 − ρ2 one recovers (1).
In the following we develop further the analysis of non-

Markovian evolution based on the spectral properties of
dynamical maps, and provide the dynamical analog of
entanglement witness for detecting non-Markovianity. In
particular, we analyze three classes of dynamical maps:
(i) unital maps, Λt½I� ¼ I, (ii) normal maps, ΛtΛ�

t ¼ Λ�
tΛt,

and (iii) commutative maps, ΛtΛs ¼ ΛsΛt, where Λ�
t

denotes dual map (Heisenberg picture). While the class
of dynamical maps considered in this Letter is not the most
general, it does comprise noise sources that are dominant in
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a vast number of experimental scenarios. Indeed, on the one
hand the Pauli channel case considered in example 2
encompasses classical stochastic noise arising from random
fluctuations in the experimental parameters. On the other
hand, in many experiments where both dephasing and
relaxation are present, the dephasing time scale is much
shorter than relaxation, so in fact dephasing in these systems
is the most relevant decoherence mechanism. Examples of
experimental systems where the main decoherence source is
of the commutative type described in this Letter are trapped
ion systems [24], ultracold gases [25], nitrogen-vacancy
(NV) centers in diamonds [26], nuclear magnetic resonance
(NMR) systems [27], and solid-state systems such as, e.g.,
Cooper pair boxes in the pure-dephasing limit (1=f
noise) [28].
Volume and body of accessible states.—Let us denote by

B the space of density operators. Clearly BðtÞ ¼ Λt½B�
denotes the body of accessible states at time t. In a recent
paper [18] an interesting geometric characterization is
proposed, namely, if Λt is P divisible, then

d
dt

VolðtÞ ≤ 0; ð2Þ

where VolðtÞ denotes the volume of accessible states at
time t, i.e., the volume of the convex body BðtÞ. This result
follows from the fact that VolðtÞ ¼ jDetΛtjVolð0Þ and for
the P-divisible map one has ðd=dtÞjDetΛtj ≤ 0 (cf., [29]).
Let us provide more geometrical insight passing to the

matrix representationΛt → FαβðtÞ ≔ TrðGαΛt½Gβ�Þ, where
Gα is an orthonormal basis in BðHÞ. A suitable choice of
Gα is the set of generalized Gell-Mann matrices with G0 ¼
I=

ffiffiffi
d

p
and Hermitian Gα (α ¼ 1;…; d2 − 1). In this case

FðtÞ has the following form,

FðtÞ ¼
�

1 0

qt Δt

�
; ð3Þ

with qt ∈ Rd2−1 and Δt being the ðd2 − 1Þ × ðd2 − 1Þ real
matrix. It is clear that FðtÞ encodes all properties of the
original dynamical map Λt. In particular, Λt and FðtÞ have
exactly the same spectrum λαðtÞ (α ¼ 0; 1;…; d2 − 1,
where d ¼ dimH), and hence DetΛt ¼ DetFðtÞ ¼
DetΔt. This shows that the volume of the set of accessible
states is fully controlled by the matrix Δt itself. Using
singular value decomposition of the matrix FðtÞ,

FðtÞ ¼ O1ðtÞΣðtÞO−1
2 ðtÞ; ð4Þ

where OkðtÞ (k ¼ 1, 2) are orthogonal matrices and ΣðtÞ is
a diagonal matrix containing singular values of FðtÞ. Hence
the action of FðtÞ consists in a rotation O−1

2 ðtÞ, a con-
traction governed by ΣðtÞ [all singular values skðtÞ ≤ 1]
followed by the rotation O1ðtÞ. Since rotation does not
change the volume the latter is fully controlled by ΣðtÞ,

jDetFðtÞj ¼ jDetΔtj ¼ DetΣðtÞ ¼
Yd2−1
k¼1

skðtÞ:

Note that s0ðtÞ ¼ 1 and all singular values skðtÞ are by
definition non-negative.
Now, defining the generalized Bloch representation

ρ ¼ ð1=dÞðIþP
d2−1
α¼1 xαGαÞ, the action of the channel Λt

on ρ corresponds to the following affine transformation of
the generalized Bloch vector x → xt ¼ Δtxþ qt. If x1 and
x2 are Bloch vectors corresponding to ρ1 and ρ2, then
½ρ1 − ρ2� → Λt½ρ1 − ρ2� corresponds to the linear trans-
formation Δtðx1 − x2Þ and hence does not depend upon
the vector qt. It clearly shows that Breuer-Laine-Piilo
(BLP) Markovianity is controlled only by Δt whereas
the full P divisibility is controlled by the entire map
FðtÞ, i.e., both Δt and qt. Note that divisibility of FðtÞ,
that is, FðtÞ ¼ Fðt; sÞFðsÞ implies the quite nontrivial
relations Δt ¼ Δt;sΔs and qt ¼ qt;s þ Δt;sqs, where qt;s
and Δt;s parametrize Fðt; sÞ. They considerably simplify if
the dynamical map Λt is unital. In this case qt ¼ 0 and one
is left with a simple divisibility condition Δt ¼ Δt;sΔs. In
this case one proves the following.
Proposition 1 If Λt is P divisible and unital, then

d
dt

∥Λt½X�∥2 ≤ 0; ð5Þ
for all operators X.
For the proof see [30]. In particular, ðd=dtÞ∥Δtx∥2 ≤ 0,
which shows that the Euclidean norm of the Bloch vector x
decreases monotonically [30]. This observation immedi-
ately implies the following.
Corollary 1 If Λt is P divisible and unital, then

ðd=dtÞskðtÞ≤0.
Hence for unital maps a rather weak witness—monotonicity
of the volume of accessible states—is replaced by d2 − 1
conditions formonotonicity of the singular values. Conditions
ðd=dtÞskðtÞ ≤ 0 mean that the body of states monotonically
shrinks in time, that is, for any t>s there exists an affine
transformation Aðt; sÞ in Rd2−1 such that Aðt; sÞ½BðtÞ� ⊂
BðsÞ. Obviously one has VolðtÞ ≤ VolðsÞ.
Example 1 Consider the qubit evolution governed by

the following time-local generator

Lt½ρ� ¼
1

2

X3
k¼1

γkðtÞðσkρσk − ρÞ; ð6Þ

which leads to the following unital dynamical map (time-
dependent Pauli channel): Λt½ρ� ¼

P
3
α¼1 pαðtÞσαρσα. In

this case condition (2) is equivalent to γ1ðtÞ þ γ2ðtÞþ
γ3ðtÞ ≥ 0. It was shown [31] that monotonicity of singular
values implies γ1ðtÞ þ γ2ðtÞ ≥ 0, γ2ðtÞ þ γ3ðtÞ ≥ 0, and
γ3ðtÞ þ γ1ðtÞ ≥ 0. Note that BðtÞ defines an ellipsoid

x21
s21ðtÞ

þ x22
s22ðtÞ

þ x23
s23ðtÞ

≤ 1

and this evolution is P divisible if BðtÞ ⊂ BðsÞ for t > s.
Clearly, one may have VolðtÞ < VolðsÞ even if BðtÞ is not a
subset of BðsÞ.
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Normal maps.—Consider now a class of normal dynami-
cal maps, that is, maps satisfying ΛtΛ�

t ¼ Λ�
tΛt, for any

t ≥ 0. Note that in this case FðtÞ has to be a normal matrix,
which means that qt ¼ 0 and Δt is a normal matrix. Hence,
any normal dynamical map is necessarily unital. Moreover,
for normal maps one has skðtÞ ¼ jλkðtÞj, where λkðtÞ
denotes eigenvalues of Λt, or, equivalently, of the matrix
FðtÞ. Hence the following:
Corollary 2 If Λt is a normal dynamical map, then P

divisibility implies ðd=dtÞjλkðtÞj ≤ 0.
The characteristic feature of the normal map is a spectral
representation Λt½ρ� ¼

P
d2−1
k¼0 λkðtÞFkðtÞTr½F†

kðtÞρ�, where
λ0ðtÞ ¼ 1 and F0ðtÞ ¼ I=

ffiffiffi
d

p
. The dual map Λ�

t has exactly
the same representation with λk replaced by λ�k, that is, one
has Λt½FkðtÞ� ¼ λkðtÞFkðtÞ and Λ�

t ½FkðtÞ� ¼ λ�kðtÞFkðtÞ. If
λ�kðtÞ ¼ λkðtÞ, the map is Hermitian; i.e., it satisfies
Λ�
t ¼ Λt for all t > 0.
Corollary 3 If Λt is a Hermitian dynamical map, then P

divisibility implies ðd=dtÞλkðtÞ ≤ 0.
Indeed, λkðtÞ ≥ 0; otherwise the map Λt is not divisible.
Hence skðtÞ ¼ jλkðtÞj ¼ λkðtÞ and the result follows. Note
that a time-local generator

Lt½ρ� ¼ −
X
k

γkðtÞ½AkðtÞ; ½AkðtÞ; ρ�� ð7Þ

gives rise to a Hermitian dynamical map if A†
kðtÞ ¼ AkðtÞ.

The simplest example is provided by AðtÞ ¼ σz, which
leads to the qubit dephasing Lt½ρ� ¼ −γðtÞ½σz½σz; ρ��.
Interestingly, in the case of Hermitian maps we may

provide an extra tool for analyzing P divisibility. In
entanglement theory one defines an entanglement witness,
i.e., a Hermitian operator W in H ⊗ H such that
(i) hψ1 ⊗ ψ1jWjψ1 ⊗ ψ2i ≥ 0, and (ii) TrðWρÞ < 0 for
some entangled state ρ. Any such operator may be con-
structed asW ≔ ð1 ⊗ ΦÞjαihαj, where Φ∶ BðHÞ → BðHÞ
is a positive but not completely positive map, and jαi ¼
ð1= ffiffiffi

d
p ÞPd

i¼1 ji ⊗ ii denotes the maximally entangled
state in H ⊗ H. Consider now an arbitrary diagonalizable
linear map Φ∶BðHÞ → BðHÞ and define

fΦ ¼ hαjð1 ⊗ ΦÞ½Pþ�jαi; ð8Þ
with Pþ¼jαihαj. Interestingly, fΦ is fully characterized by
the spectral properties of the mapΦ. One has the following.
Proposition 2 Function fΦ is fully determined by the

spectrum of Φ, that is, fΦ ¼ d−2
P

d2−1
α¼0 λα, where λα are

eigenvalues of Φ.
Indeed, consider the spectral representation Φ½ρ�¼P

αλαFαTrðG†
αρÞ, where fFα; Gαg provide a damping basis

[32] for the map Φ, that is, Φ½Fα� ¼ λαFα and Φ�½Gα� ¼
λ�αGα such that TrðFαG

†
βÞ ¼ δαβ. One has

d2fΦ ¼
X
i;j

X
k;l

Trððjiihjj ⊗ jiihjjÞ · ðjkihlj ⊗ Φ½jkihlj�ÞÞ

¼
X
α

X
i;j

λαhijFαjjihjjG†
αjii ¼

X
α

λα;

due to TrðFαG
†
αÞ ¼ 1. Therefore, one arrives at the

following.
Proposition 3 If Λt is a P divisible Hermitian map, then

d
dt

hαjð1 ⊗ ΛtÞ½Pþ�jαi ≤ 0; ð9Þ
for all t ≥ 0.
We note here that condition (9) can be easily detected in an
experimental scenario without performing all the measure-
ments required for quantum process tomography. It may be
considered as a dynamical analog of an entanglement
witness. Actually, fðtÞ ¼ hαjð1 ⊗ ΛtÞ½Pþ�jαi is the prob-
ability of projecting the global state of the system and the
ancilla onto state jαi. Let us consider for simplicity the case
of two-dimensional systems. We can write jαi in terms of
local Pauli operators as jαihαj ¼ 1=4ðI ⊗ Iþ σx ⊗ σx−
σy ⊗ σy þ σz ⊗ σzÞ. This means that fðtÞ can be measured
from the expectation value of the local observables σx ⊗ σx,
σy ⊗ σy, σz ⊗ σz without requiring a complete set of two-
qubit operators that would be needed for entanglement-
assisted quantum process tomography. Moreover, the detec-
tion scheme considered herewould be particularly suited in a
linear optical scenario. Actually, the projection onto the
maximally entangled state jαihαj could be performed in a
single measurement because it corresponds to a single
projection onto a Bell state while there is no need to
distinguish between the four Bell states, which is usually
considered a drawback of linear optical implementations.
Recall that the Hermitian map allows for the Kraus

representation with Hermitian Kraus operators KαðtÞ, that
is, Λt½ρ� ¼

P
αKαðtÞρKαðtÞ. In this case proposition 3

implies the following.
Corollary 4 If Λt is a P divisible Hermitian map, then

d
dt

X
α

½TrKαðtÞ�2 ≤ 0; ð10Þ

for all t ≥ 0.
Example 2 The time-dependent Pauli channel Λt½ρ� ¼P
αpαðtÞσαρσα defines a Hermitian dynamical map with

KαðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
pαðtÞ

p
σα (with σ0 ¼ I). One finds from (10) that

P divisibility implies ðd=dtÞp0ðtÞ ≤ 0.
Example 3 (Weyl channel) The Pauli channel may be

easily generalized for d > 2 as follows,

Lt½ρ� ¼
Xd−1
kþl>0

γklðtÞ½UklρU
†
kl − ρ�; ð11Þ

where Ukl are Weyl operators Ukl ¼
P

d−1
m¼0 ω

mkjmi
hmþ lj, with ω ¼ e2πi=d. Because of the well-known
properties

UklUrs ¼ ωksUkþr;lþs; U†
kl ¼ ωklU−k;−l;

this generator gives rise to the normal dynamical map
Λt½ρ� ¼

P
d−1
k;l¼0 pklðtÞUklρU

†
kl, and hence ðd=dtÞjλαðtÞj ≤

0 defines a necessary condition for P divisibility.
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Example 4 (generalized Pauli channel) The general-
ized Pauli channel [33,34] is a special example of the Weyl

channel defined as follows: let fjψ ðαÞ
0 i;…; jψ ðαÞ

d−1ig denote
dþ 1 mutually unbiased bases in Cd. Define the quantum

channels Pα½ρ� ¼
P

d−1
l¼0 jψ ðαÞ

l ihψ ðαÞ
l jρjψ ðαÞ

l ihψ ðαÞ
l j and let

Lt½ρ� ¼
Xdþ1

α¼1

γαðtÞðPα½ρ� − ρÞ: ð12Þ

This map is Hermitian and P divisibility implies [34]
γðtÞ − γαðtÞ ≥ 0, where γðtÞ ¼ P

αγαðtÞ.
Example 5 (perfect decoherence) Consider the follow-

ing time-independent Hamiltonian in HA ⊗ HB,

H ¼ HA ⊗ IB þ IA ⊗ HB þ
X
k

Pk ⊗ Bk; ð13Þ

where Pk ¼ jkihkj are projectors into the computational
basis vectors jki in HA and Bk are Hermitian operators in
HB. Assuming that HA ¼ P

kϵkPk one finds H ¼P
kPk ⊗ Zk, where Zk ¼ ϵkIB þHB þ Bk. Such a

Hamiltonian leads to a pure decoherence of the density
operator ρA of subsystem A,

ρAðtÞ ¼ trBðe−iHtρA ⊗ ρBeiHtÞ ¼
X
k;l

cklðtÞPkρAPl;

with cklðtÞ ¼ trðe−iZktρBeiZltÞ. It turns out that cklðtÞ define
eigenvalues of the map Λt½ρA� ¼

P
k;lcklðtÞPkρAPl, which

is normal. Hence, P divisibility implies ðd=dtÞjcklðtÞj ≤ 0.
The map Λt becomes Hermitian if cklðtÞ are real. In this
case (9) gives ðd=dtÞPk;lcklðtÞ ≤ 0.
Commutative maps.—Finally consider a class of quantum

evolutions satisfying the following commutativity condition
ΛtΛs ¼ ΛsΛt, for any t; s > 0. Equivalently, the time-local
generator satisfies LtLs ¼ LsLt. The commutativity con-
dition implies that Λt and its dual (Heisenberg picture)
possess time-independent eigenvectors

Λt½Fα� ¼ λαðtÞFα; Λ�
t ½Gα� ¼ λ�αðtÞGα; ð14Þ

for α ¼ 0; 1;…; d2 − 1. This condition is indeed very
restrictive. However, in practice many examples considered
in the literature belong to the commutative class. The reason
is very simple: assuming that Λt satisfies the time-local
master equation ðd=dtÞΛt ¼ LtΛt, with suitable time-local

generator Lt, one has Λt ¼ T e
R

t

0
Lτdτ, where T denotes the

chronological operator. In general the above formula has
only a formal meaning and it is defined by the Dyson
expansion Λt ¼ 1þ R

t
0 dt1Lt1 þ

R
t
0 dt1

R t1
0 dt2Lt1Lt2 þ � � �

Now, in the commutative case the chronological product
drops out and the solution is represented by the simple

exponential formula Λt ¼ e
R

t

0
Lτdτ. Moreover, the eigenval-

ues λαðtÞ of the dynamical map are related to the corre-
sponding eigenvalues μαðtÞ of the time-local generator Lt

via λαðtÞ ¼ e
R

t

0
μαðτÞdτ. Actually, examples 1–5 belong to the

commutative class. One has, therefore, the following
obvious property:
Proposition 4 If Λt defines commutative P-divisible

map, then ðd=dtÞjλαðtÞj ≤ 0 or equivalently ReμαðtÞ ≤ 0

for α ¼ 1;…; d2 − 1.
Indeed, one has ðd=dtÞ∥Λt½Fα�∥1 ¼ ðd=dtÞjλαðtÞj∥Fα∥1
and hence ðd=dtÞ∥Λt½Fα�∥1 ≤ 0 implies ðd=dtÞjλαðtÞj ≤ 0.
It should be stressed that normal maps and commutative

maps define two different classes with nontrivial intersec-
tion. In particular, a map that is not unital cannot be normal
but can be commutative (cf., example 6). Consider a time-
local generator

Lt½ρ� ¼ Lð1Þ
t ½ρ� þ Lð2Þ

t ½ρ�
¼ −i½HðtÞ; ρ� −

X
k

γkðtÞ½AkðtÞ; ½AkðtÞ; ρ��;

with A†
kðtÞ ¼ AkðtÞ andH†ðtÞ ¼ HðtÞ [cf., (7)]. This map is

unital but it need not be normal. It is normal if Lð1Þ
t and

Lð2Þ
t commute. However, being normal it still might be

noncommutative.
Let us observe that for commutative maps condition (2)

may be easily translated to the condition upon the time-
local generator Lt. Using the well-known property of
matrices DeteA ¼ eTrA one finds that (2) is equivalent to
TrLt ≤ 0, and hence the following:
Corollary 5 If Λt is a commutative divisible map, then

its time-local generator Lt satisfies

hαjð1 ⊗ LtÞ½Pþ�jαi ≤ 0: ð15Þ
Example 6 (amplitude damping channel) The dynam-

ics of a single amplitude-damped qubit is governed by a
single function GðtÞ,

Λt½ρ� ¼
�
ρ11 þ ð1 − jGðtÞj2Þρ22 GðtÞρ12

G�ðtÞρ21 jGðtÞj2ρ22

�
; ð16Þ

where the function GðtÞ depends on the form of the
reservoir spectral density JðωÞ [2]. The dynamical map
Λt is commutative but not normal. The corresponding
eigenvalues read as follows: λ0ðtÞ ¼ 1, λ1ðtÞ ¼ GðtÞ,
λ2ðtÞ ¼ G�ðtÞ, and λ3ðtÞ ¼ jGðtÞj2. This evolution is gen-
erated by the following time-local generator,

Lt½ρ� ¼ −
isðtÞ
2

½σþσ−; ρ� þ γðtÞ
�
σ−ρþ −

1

2
fσþσ−; ρg

�
;

where σ� are the spin lowering and rising operators
together with sðtÞ ¼ −2Imð _GðtÞ=GðtÞÞ, and γðtÞ ¼
−2Reð _GðtÞ=GðtÞÞ. It is clear that ðd=dtÞjλkðtÞj ≤ 0 implies
γðtÞ ≥ 0. Again in this case this condition is necessary and
sufficient for Markovianity. Note that now eigenvalues are
in general complex. Interestingly, for Lorentzian spectral
density JðωÞ ¼ ðγMλ2=2π½ðω − ωcÞ2 þ λ2�Þ the function
GðtÞ becomes real and hence fðtÞ ¼ 1

4
½1þ GðtÞ�2 and
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condition (9) implies γðtÞ ≥ 0. This example may be
considered as an analog of the non-Hermitian
Hamiltonian with real spectra analyzed by Bender [35].
Conclusions.—In this Letter we provided further char-

acterization of non-Markovian evolution for three impor-
tant classes of dynamical maps: unital, normal, and
commutative. It is shown that P divisibility implies simple
conditions for the spectra of the dynamical maps—singular
values in the case of unital maps, and eigenvalues in the
case of normal and commutative maps. These conditions
provide much stronger non-Markovianity witness than the
volume of accessible states [18]. Finally, it is argued that
the quantity hαjð1 ⊗ ΛtÞ½Pþ�jαi may be considered as a
dynamical analog of entanglement witness that can be
accessed in the experimental scenario. Our analysis is
illustrated by several paradigmatic examples. It should
be stressed, however, that the notion of non-Markovianity,
or memory effects, based solely on a reduced dynamics
described by the dynamical map satisfying the correspond-
ing master equation has to be taken with care. It turns out
[36] that the random unitary qubit evolution Λt satisfying
the non-Markovian master equation—corresponding to
negative decoherence rates—may be realized as stochastic
averaging of the purely unitary evolution governed by
dephasing dynamics in random directions, or equivalently,
as a classical perfectly Markov process. This only proves
that the notion of non-Markovian quantum evolution still
deserves a thorough analysis.
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