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Spatially localized defect structures emerge spontaneously in a hydrodynamic description of an active
polar fluid comprising polar “actin” filaments and “myosin” motor proteins that (un)bind to filaments and
exert active contractile stresses. These emergent defect structures are characterized by distinct textures and
can be either static or mobile—we derive effective equations of motion for these “extended particles”
and analyze their shape, kinetics, interactions, and scattering. Depending on the impact parameter and
propulsion speed, these active defects undergo elastic scattering or merger. Our results are relevant for the
dynamics of actomyosin-dense structures at the cell cortex, reconstituted actomyosin complexes, and 2D
active colloidal gels.
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The dynamical interplay between topological defects,
elasticity, and flow has been a recurrent theme in the
physics of condensed media [1]. This has been of recent
interest in the context of active systems, in which activity
drives the formation and dynamics of collective or emer-
gent structures [2]: be it the rotation of spiral defects in
polar gels [3,4], the translation, ordering, and complex
flows ofþ1=2 disclinations in active nematics composed of
filament-motor complexes [5–13] or the spontaneous for-
mation of interacting mobile aggregates of active colloidal
particles [14–18]. These structures are often particlelike,
with a well-defined position and orientation, and it is
desirable to cast their dynamics solely in terms of their
own coordinates and form factor.
In this Letter we analyze the emergent dynamics of polar

filaments (“actin”) actively driven by motor proteins
(“myosin”) that undergo turnover, i.e., binding or unbind-
ing (with an estimated time scale of ∼6 s in vivo [19]) [20–
23]. Recent studies on actomyosin-dependent molecular
clustering at the cell surface and in in vitro reconstitutions
of a thin actomyosin layer on a supported membrane,
provide our primary motivation [20,24–26]. Our main
results are the following: (i) A variety of spatially compact
structures, such as mobile virtual defects, rotating spiral
defects, or stationary asters, emerge spontaneously from an
interplay between elastic, dissipative, and active stresses.
(ii) Activity drives defect motion and shape deformation,
with isolated virtual defects moving as extended particles,
dressed by a cloud of myosin density. (iii) These extended
particles interact via the accompanying myosin cloud, and
exhibit both phoresis and taxis. (iv) We study the dynamics,
elastic scattering, and (inelastic) merger of a pair of
mobile defects as a function of impact parameter and
self-propulsion velocity, by casting the effective dynamics
in terms of defect coordinates and shape factor. We
note that all the emergent characteristics of the extended

particle—its integrity, dynamics, and their mutual inter-
actions, are consequences of the dressed myosin cloud.
Our results are obtained by solving hydrodynamic

equations for a thin film of active fluid comprising actin
filaments, described by a concentration c and orientation n,
and filament-bound myosin motors, with concentration ρ,
which dissipate momentum via frictional damping at the
cell substrate. As found from systematic coarse grainings
[21], the active contributions to the dynamics of c and n
come about only in the presence of bound myosin—the
Supplemental Material [27] contains a phenomenological
derivation of the following simplified hydrodynamic equa-
tions, based on symmetry and conservation laws [4,30],

∂c
∂t ¼ − ~∇ · ð−Da

~∇cþ v0cn −Wc~∇ρÞ; ð1Þ

∂ρ
∂t ¼ − ~∇ · ð−Dm

~∇ρþ v0ρnÞ þ kb
c

cþ ch
− kuρ ð2Þ

∂n
∂t þ λðρÞðn · ~∇Þn ¼ K∇2n − ζ0 ~∇cþ ζ ~∇ρ

þ ½αðcÞ − βðcÞn2�n; ð3Þ
where we have taken the active stress σact ¼ −WðcÞρ
(W < 0, for contractility), and we work in the one-constant
approximation [31]. We take αðcÞ ¼ νðc=c� − 1Þ and
βðcÞ ¼ νð1þ c=c�Þ, which ensures that jnj2 → 1, when
c ≫ c� [32]. In Eq. (3), ζ0 > 0 ensures positive filament
compressibility, while ζ > 0 describes the preferential
alignment of the filament orientation to gradients of myosin
density [23], here a consequence of the active stress. These
equations generalize earlier models of acto-myosin [20–
23,32], which had been proposed on the strength of both
symmetry arguments and coarse grainings, by explicitly
treating both the polar filaments and the myosin motors as
dynamical variables. We note a resemblence to recently
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proposed models of chemoactive colloids [33], which
suggests that our results may be of wider applicability.
We begin by studying the linear instability of the

homogeneous, orientationally isotropic phase when c0<c�,
under the perturbations, cðr; tÞ ¼ c0 þ δcðr; tÞ, ρðr; tÞ ¼
ρ0 þ δρðr; tÞ and nðr; tÞ ¼ δnðr; tÞ, where ρ0 ¼ ðc0=c0þ
chÞkb=ku. We find two potential instability mechanisms.
(i) The binding of myosin and the contractile advection of
filaments (∝ Wc~∇ρ) induces an density clumping instability
when kbjWj≳Daku, with a band of unstable wave vectors
between k ¼ 0 and k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijWjkbc0 −Daku

p
=Da. Filament

orientation remains disordered (hni ¼ 0). (ii) Myosin-
induced torques (∝ ζ ~∇ρ) and advection (∝ v0cn) drives a
splay deformation (j ~∇ · nj > 0) and density clumping when
Dajαðc0Þj ≲ v0ζρ0, with a band of unstable wave vectors
between k ¼ 0 and k¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½Dakuαðc0Þþc0kbv0ζ�=½DaKku�

p
.

In both cases the instability towards clumping is non-
oscillatory [27].
To see the fine structure of the emergent compact

configurations, we need to go beyond the linear regime.
We numerically integrate Eqs. (1)–(3) on a square grid with
periodic boundary conditions using an explicit forward-
time-central-space (FTCS) scheme and appropriate initial
conditions [27]. Starting from a homogeneous, isotropic
phase, we observe that the system quickly settles down into
an evolving population of spatially compact actin-myosin
clusters (Supplemental Material, movies 1, 2 [27]). To
explore the typology of compact structures formed, we
choose initial conditions that produce a single defect and
build a phase diagram in K and ζ.
Figure 1(a) shows the single-defect phase diagram

together with the compact density profiles and orientational
textures that we obtain. All structures consist of a compact
accumulation of actin filaments dressed by a wider myosin
cloud [Fig. 1(b)]. At lowK they are radially symmetric with
zero net polarity (hcni ¼ 0) and, hence, static. The texture
is set by the control parameter ζ=ζ0. When ζ=ζ0 is small
(large) the term ζ0 ~∇c (ζ ~∇ρ) dominates to form an out(in)-
pointing aster. As we show in the Supplemental Material
[27], integrating out the myosin density when it is “fast,” in
the limit of large ζ=ζ0, results in effective equations for the
active filament identical to those analyzed in [20,34], with a
“negative compressibility” in the n equation [32,34].

At an intermediate value of ζ=ζ0, ζ0 ~∇c dominates at the

core of the domain and ζ ~∇ρ dominates at the boundary,
forming a spiral aster texture, which rotates with an angular
velocity ωðrÞ ∝ v0nθðrÞ [3,4].
When K is large the defect core moves abruptly from

within to outside the compact domain, giving rise to an
apparent or virtual defect [35–37]. Depending on the

relative strength of ζ ~∇ρ and ζ0 ~∇c, the virtual defect is

either a virtual out-pointing aster (hc ~∇ · ni > 0) or a virtual

aster (hc ~∇ · ni < 0).

These textures can be qualitatively understood as arising
from a competition between the first three terms on the right-
hand side of Eq. (3). We further note that the dynamics of
n (when λ ¼ 0) can be obtained as ∂tn ¼ −δL=δn,
where the Lyapunov function L ¼ R

d2x ½Kð∂injÞð∂injÞþ
ðζρ − ζ0cÞ ~∇ · n�. The quantity ζρ − ζ0c thus promotes a
spontaneous splay [37,38], with a negative (positive) diver-
gence when ζρ − ζ0c > 0 (< 0). The Lyapunov function L
is analogous to the free energy of textured Langmuir
domains [35,37], indicating that the transition between aster
and virtual defect is first order, as a function of the control
parameterRaðζρ0 − ζ0c0Þ=K [35], whereRa is the radius of
the filament domain.
The profile of filament and myosin densities is set by the

interplay between the binding and advective nonlinearities
and it is difficult to obtain an exact expression. However, we
mayexploit the compactnessof the filament domain to analyse
the decay of the dressed cloud of myosin. Compactness
implies that cðrÞ, jnj ≈ 0 for r > Ra (where Ra is naturally
interpreted as the radius of the filament domain). The outer
solution (i.e., for r > Ra) for ρ at steady state satisfies
Dm∇2ρ¼kuρ. The radially symmetric solution is found to be,

ρðrÞ ¼ A1K0ðr=r0Þ; ð4Þ

(a)

(b)

FIG. 1. (a) Typology of spatially compact single-defect struc-
tures in the K—ζ plane for a fixed concentration of filaments c0,
together with snapshots of the textures formed by the filament
orientation n—the heat map represents c and the arrows represent
cn. All snapshots are equally sized. (b) Myosin (red) and actin
(black) concentration profiles within a moving virtual aster, along
directions (i) longitudinal and (ii) transverse to the direction of
motion (dashed arrow). Insets: semilog scale.
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where KνðrÞ is the modified Bessel function of the second
kind and r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm=ku

p
. The constantA1 may be determined

by matching the inner solution (r < Ra, where jnj, c ≥ 0)
with the outer solution.
The sudden appearance of a net polarity (jhcnij > 0)

manifests as a shape distortion away from circularity and a
center-of-mass motion driven by the advective current,
∝ cn, which we analyze to lowest order in deformation. We
transform to a comoving frame with velocity vc and solve
for the lowest order axisymmetric steady-state solution, i.e.,
of the form ρ0ðrÞ þ ρ1ðrÞ cos θ, where θ ¼ 0 is the direc-
tion of motion. When deviations from circularity are small
(ρ1 ≪ ρ0), ρ0 is given by Eq. (4) and,

ρ1ðrÞ ¼ A2K1

�
r
r0

�
−

vcffiffiffiffiffiffiffiffiffiffiffi
Dmku

p A1rK0

�
r
r0

�
; ð5Þ

where A2 may once again be obtained from matching the
inner and outer solutions at r ¼ Ra.
From our numerical analysis, we find that an isolated

moving virtual defect with its myosin cloud maintains its
shape and texture over time. The density and orientation
fields then obey a traveling front form c ¼ c½r −RðtÞ�,
n ¼ n½r −RðtÞ�, ρ ¼ ρ½r −RðtÞ�. We may thus describe
the motion of a single virtual defect, isolated from others,
solely in terms of its center-of-mass coordinate RðtÞ≡
c−1t

R
Ω d2r rc and net polarity pðtÞ≡ c−1t

R
Ω d2rnc, where

ct ¼
R
Ω d2r c and Ω is the compact support of the defect,

_RðtÞ ¼ 1

ct

Z
d2r Jf ≈

v0
ct

Z
d2r cn ¼ vcp̂ðtÞ;

_pðtÞ ¼ 1

ct

Z
d2r c

�
Jf
c
· ~∇þ ∂

∂t
�

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
convective derivative

n ¼ 0; ð6Þ

where the overdot is a time derivative. Above, we have

made use of the fact that filament diffusion Da
~∇c and the

Wc~∇ρ term are responsible for maintaining the size of the
moving domain, and, hence, they balance to 0 everywhere.
This leaves only the advective contribution (∝ v0cn) in the
first equation.
The speed of the domain, vc ¼ v0jncj, may be approx-

imately calculated from an ansatz [shown in Fig. S3(b) in
Ref. [27]] and is found to increase from∼0.85v0 to v0 as the
apparent defect core moves further from the center of the
domain. This is consistentwith the numerics [27], thoughwe
note that the asymmetric profile of the filament and myosin
fields will also contribute to the speed of the domain.
We next investigate the interaction between these “par-

ticles.” When the filament cores of two domains are well-
separated, jnj ≈ 0 in the region between them and elastic
interactions may be neglected. Their interaction is instead
mediated by the associated myosin clouds—stationary
defects do not interact unless they are close enough to
allow for a finite overlap between their myosin clouds, with

a interaction length scale r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm=ku

p
—this interaction

leads to their merger (Supplemental Material, movie 1
[27]). On the other hand, moving virtual defects may
initially be well separated and then approach each other
(Supplemental Material, movie 2 [27]). We derive inter-
actions between virtual defects by decomposing the micro-
scopic fields into their contributions from the each domain
(c ¼ P

ci, etc.), valid when the domains are well separated
(jRi −Rjj > Ra), and define the center of mass and
polarity of the each cluster (Ri and pi) as before:

_RiðtÞ ¼ vcpiðtÞ −
X
j≠i

W

cðiÞt

Z
d2r ciðrÞ ~∇ρjðr −RjÞ;

_piðtÞ ¼
X
j≠i

ζ

cðiÞt

Z
d2r ciðrÞ ~∇ρjðr −RjÞ: ð7Þ

The second equation must be augmented with the con-
straint that the magnitude of each pi is constant.
We develop the integral appearing in both equations

into a multipole expansion, valid when the length scale
over which the myosin cloud varies, r0, is larger than
the characteristic size of the virtual defect. Expanding
ρjðr −RjÞ around r ¼ Ri we findZ

d2r ciðrÞ ~∇ρjðr −RjÞ

¼ Mð0Þ ~∇ρjðRijÞ þ ðMð2ÞðRiÞ∶ ~∇ ~∇Þ ~∇ρjðRijÞ þ � � � ; ð8Þ
where the multipole moments are Mð0Þ ¼ R

d2r ciðrÞ and

Mð2Þ
αβ ðr0Þ ¼ 1

2

R
d2rðrα − r0αÞðrβ − r0βÞ cðrÞ. Expanding the

myosin field into axisymmetric circular harmonics ρðRÞ ¼
ρð0ÞðRÞ þ ρð1ÞðRÞðp ·R=RÞ þ � � � and using the forms
given in Eqs. (4), (5), we may close the effective equations
of motion for a population of interacting virtual defects.
Retaining for simplicity only the radially symmetric term in
ρ [i.e., Eq. (4) and the monopole term in Eq. (8)], and using
the shorthand Rij ¼ Ri −Rj:

_RiðtÞ ¼ vcpiðtÞ −
X
j≠i

WA1

r0
K1

�jRijj
r0

�
R̂ji;

_piðtÞ ¼
X
j≠i

ζA1

r0
K1

�jRijj
r0

�
R̂ji · ð1 − pipiÞ: ð9Þ

Note that, as each ρj decays away from Rj, the signs of W
and ζ give rise to an attractive “force” (phoresis) and an
attractive “torque” (taxis), respectively, between virtual
defects [39,40]. We note that while only a virtual defect
may exhibit taxis (which requires a nonzero p) the
imposition of a gradient of myosin motors may elicit the
phoresis of an otherwise static aster (Supplemental
Material, movie 7 [27]).
Wenow turn to the consequences of Eqs. (7) and (8) on the

“scattering” of virtual defects. First, we investigate this in the
geometry depicted in Fig. 2(b) by numerically integrating
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the full equations of motion, Eqs. (1)–(3). Figure 2(a) shows
that for large impact parameter b or for large self-propulsion
speed ∝ v0 the two clusters “elastically scatter” off each
other and escape to the far field (Supplemental Material,
movie 3 [27]), whereas for low b or low v0 they merge
(SupplementalMaterial,movie 4 [27]). Interestingly, as seen
in the trajectories shown in Fig. 2(a), the deflection angle of
scattering decreases with v0 even for a fixed b. This is
reminiscent of the scattering of inertial particles, even
though the extended particles here are formed by constitu-
ents undergoing overdamped dynamics.
The symmetry of the scattering geometry of Fig. 2(b) can

be exploited to develop an analytic representation of the
scattering process. We define the distance of one virtual
defect from the other, rc ¼ jR21j, and the radial projection
of the polarity vector, γ ¼ R12 · p1=rc.

_rc ¼ 2vcγ þ 2W̄K1

�
rc
r0

�
;

_γ ¼ ð1 − γ2Þ
�
2
vc
rc

− ζ̄K1

�
rc
r0

��
; ð10Þ

where W̄ ¼ WA1=r0 and ζ̄ ¼ ζA1=r0.
A representative phase portrait of this dynamical system

is depicted in Fig. 2(c). It can be shown that Eqs. (10) admit
a single saddle node [42], which is always between
0 < γ ≤ 1. Thus, in the physically relevant region of the
phase plane −1 < γ < 1, the unstable separatrix of this
saddle node acts as a phase boundary between merger and
elastic scattering.
Note, in particular, that all trajectories escape to infinity

or end in a merging—there exist no bound states.

We end with a brief discussion on the sequence of events
that occur when two domains merge. We find numerically
that when two clusters merge in a head-on collision they do
so in the following stereotypic manner [Fig. 3(a) and
Supplemental Material, movie 6 [27]]—(i) initial overlap
of the concentration fields leads to the formation of a neck
region, which develops an aster defect (ii) the neck widens
to produce an elliptic domain which then (iii) relaxes

(a)

(b) (c)

FIG. 2. (a) Left: several representative trajectories from the numerics with varying v0 and fixed b ¼ 5.5 (merger is depicted by the ×).
Right: The outcome as a function of impact parameter b and self-advection v0. (b) Left: The scattering geometry (green: c, arrows: n,
red: ρ). (c) The phase portrait of the scattering dynamical system, Eqs. (10), generated using the software PPLANE [41]. The black dot is
the saddle point whose unstable separatrix (red dashed line) separates the merge region from the scattering region. Plotted in green is the
stable separatrix. In blue are two example trajectories. The shaded region is the distance at which the merger will occur.

(a)

(e)

(b) (c) (d)

FIG. 3. A schematic of the sequence of events in merger,
namely, (a) approach of the clusters, followed by (b) neck
formation, which (c) grows to form an elliptic domain that
(d) relaxes exponentially to a radially symmetric domain. (e) Time
evolution of the ratio of the neck width a to the single domain
radius R (red diamonds) as well as the shape factor ϵ ¼
dmaj=dmin − 1 (black squares), where dmaj, dmin are the lengths
of the major and minor axes of the ellipse enclosing the merging
domain area. The blue line is an exponential fit.
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exponentially to a radially symmetric domain with an aster
defect (as in Ref. [43]), Fig. 3(b).
WhenK is large the aster core is unstable [35] and moves

out of the merged domain. However, when K is small, the
defect core is stable and remains to form a stationary aster
or spiral aster (Supplemental Material, contrast movies 4
and 5 [27]). In the intermediate regime, we find that the fate
of the domain depends on the impact parameter b and the
self-advection speed v0, revealing the dynamical nature of
the interacting myosin field. We will carry out a detailed
study of the dynamics of merger in a later work.
In summary, we have conducted a detailed study of the

form and dynamics of the compact, emergent structures that
arise in a hydrodynamic description of an active polar fluid
with associated “motor” elements. By explicit construction
of effective equations of motion, we have demonstrated that
these structures behave as extended self-propelled particles
that exhibit both phoresis and taxis. We expect our results
to be relevant to systems exhibiting both self-propulsion as
well as contractile stresses, such as might be expected for
the dynamics of actomyosin structures as the cell surface
[20]. We look forward to experimental tests of our
predictions in in vivo as well as in vitro contexts [44].
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