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We provide an energetic insight into the catastrophic nature of thinning instability in soft electroactive
elastomers. This phenomenon is a major obstacle to the development of giant actuators, yet it is neither

completely understood nor modeled accurately. In excellent agreement with experiments, we give a simple
formula to predict the critical voltages for instability patterns; we model their shape and show that
reversible (elastic) equilibrium is impossible beyond their onset. Our derivation is fully analytical, does not
require finite element simulations, and can be extended to include prestretch and various material models.
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Consider a thin dielectric plate with conducting faces:
when will it break if a voltage is applied? If it is rigid, it will
break once its dielectric strength is overcome by the voltage.
However, what if it is highly stretchable, like the elastomers
used for soft actuators, stretchable electronics, or energy
harvesters? The precise answer to that question is not
known. Experiments show that it will break when highly
localized thinning deformations occur and, furthermore, that
this process is catastrophic, as the deformations can neither
be controlled nor restrained once they have started.

Here, we unveil the physical meaning of catastrophic
thinning, based on energy minimization arguments; we
derive a unifying and simple formula giving very accurate
predictions of the voltage thresholds for the creasing
instability (one-side constrained plates, with a compliant
electrode on one face and a rigid electrode on the other face)
and the pull-in instability (unconstrained plates with fully
compliant electrodes glued on both faces); we calculate the
shape of the instability patterns at their onset, and we show
that they are not sustainable but that they give the path to
final breakdown; we generalize the results to include
prestretch.

Typically, thin dielectric elastomers are highly deform-
able (isotropic, incompressible) polymeric or silicone
electroelastic films, brushed with conductive carbon grease
[1]. With an applied electric field, the attractive Coulomb
forces between the electrodes compress the thickness of the
film, which expands in its plane. At first, the rectangular
film deforms homogeneously into another rectangle, until a
critical voltage is reached. Then a sudden, irreversible,
and nonhomogeneous thinning localization occurs (usually
accompanied by a spark and a popping sound [2]),
anticipating the dielectric breakdown of the film, forming
holes, and significantly reducing its capacitance (Fig. 1).

Call E the following nondimensional measure [4] of the
electric field:
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E= \//;% (1)

and E.. its critical value. Here, V is the applied voltage, € is
the dielectric permittivity of the elastomer, y its initial shear
modulus, and % its initial thickness. For unconstrained
plates, experiments [5] give an E, in the range 0.678-0.686
at the onset of pull-in instability, corresponding to a
contraction of 30%-34% in the layer’s thickness. For
one-side constrained plates, experiments [6] reveal that
E. = 0.85. Finally, extensive experimental studies docu-
ment that dead loads (for unconstrained films) and

FIG. 1.
catastrophic localization of thinning deformations (pull-in insta-
bility). Reprinted from [3], with the permission of AIP Publishing.
(Left panel) Sketch of the experimental setting and qualitative
description of the localizations.

(Right panels a,b) First recorded experimental evidence of
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prestretch (for one-side constrained films) play a beneficial
role in delaying the onset of instabilities [7-9].

However, despite the abundance of experimental data,
the critical values of the electric field to date have not been
predicted by theory in an entirely satisfying manner. Many
papers establish a connection between pull-in and snap-
through instabilities for unconstrained films [4] using the
so-called Hessian method, but when dead loads are applied,
these predictions fail to account for the actual delay of
instability, a key factor for technological applications [7].
Indeed, dead loads can suppress snap-through instability,
but not the catastrophic thinning leading to failure. For
unconstrained films, there were attempts at introducing
linearized [10-13] and nonlinear [14] inhomogeneous
bifurcation modes on top of the homogeneous deformation,
but they require lengthy calculations, do not explain the
catastrophic nature of localized deformations, and do not
quantify the beneficial effects of prestretch. The situation is
even worse for one-side constrained films. So far, electro-
creasing has been studied only with entirely numerical
methods based on finite element method (FEM) simula-
tions: in the absence of prestretch, they lead to an estimate
of E. = 1.03, which is more than 20% off the experimental
mark [6] of E. = 0.85. There are no theoretical predictions
available when prestretch is applied.

Our analysis [15] does not require the machinery of
classical bifurcation methods. It provides a new paradigm
for understanding electromechanical instability, which we
find corresponds to a threshold where the electroelastic
energy does not possess minimizers in a general class of
homogeneous and nonhomogeneous deformations. For
both unconstrained and constrained films, with and without
prestretch and for a quite general class of incompressible
materials, we obtain the following simple unifying formula
for the critical electric field:

!
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V3 H A Ay
where 4, and 4, are the principal stretches in the plane of the
thin layer, W is the elastic energy density, and I = A} +
23+ (A14,)72 is the first invariant of deformation [and
hence, y = 2W’(3)]. For unconstrained films, the principal
stretches are determined by the homogeneous solution; for
constrained films, they are the fixed prestretches imposed
prior to attachment to the rigid substrate. Above E_., no stable
configurations exist, neither homogeneous nor nonhomo-
geneous. As soon as E. is attained, failure precursors appear,
opening the way for a catastrophic failure of the film. The
initial pattern of these precursors is a permanent signature
for the subsequent inelastic processes; see Figs. 2 and 3.
To assess how formula (2) predicts the onset of catastrophic
thinning, we first consider one-side constrained films for the
creasing instability; see the sketch in the inset of Fig. 4.
For small stretches (41, 4, < 1.5), the constitutive response
can be modeled as neo-Hookean: W = pu(I —3)/2, and
formula (2) further simplifies to E. = /2/3min(1/4,,
1/2,). Without prestretch (1; = 4, = 1), this formula gives
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FIG. 2. (Left panel) Experimental creasing instability for non-
prestretched one-side constrained films. Reprinted from [30],
with the permission of AIP Publishing. (Right panel) Predicted
failure precursor.

E. = +/2/3 = 0.816, less than 4% off the value E,. = 0.85
obtained experimentally [see Ref. [6], Fig. 3(b)] and closer
than the estimate £, = 1.03 obtained by FEM simulations
[see Ref. [6], Fig. 4(b)]. For small values of uniaxial
prestretch (4, =4 > 1, 4, = 1), experiments [8] report an
initial reduction of the critical electric field, in agreement
with the prediction of formula (2) here, E. = /2/347\.
Beyond this initial negative effect, larger values of prestretch
were measured as beneficial in increasing the critical electric
field [8,9], an effect that has not yet been explained
theoretically or numerically. To demonstrate the ability of
formula (2) to reproduce this effect, we use a material model
W which accounts for the strain stiffening induced by the
limit chain extensibility of the elastomer in large deforma-
tions. Figure 4 shows the good agreement reached between
our theory and the experiments (see the Supplemental
Material [15] for the calibration of the model).

We then consider unconstrained films to study the
onset of the pull-in instability; see the sketch in the inset
of Fig. 5. For equibiaxially stretched films (4; = 4, = 1) in
the absence of dead loads, the homogeneous extension of
the neo-Hookean elastomer is described by E =

V472 — 178 (see Ref. [4] and the Supplemental Material
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FIG. 3. (a) Alignment of creases in the direction of higher
prestretch as voltage increases for one-side constrained films.
Reprinted from [8], with the permission of John Wiley & Sons,
Inc. (b) Failure precursors with 4, =2, 1, = 1.
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FIG. 4. Creasing instability after uniaxial prestretch. Compari-
son of experiments (the dashed line) [8] and theory (the solid
curves, plotted for different values of n, the number of links in the
Arruda-Boyce model). Here, E. = E./+/2/3; see the Supple-
mental Material [15] for model calibration. A thick solid curve
shows the previous qualitative trend based on dimensional or
FEM analysis [8].

[15]). It reaches E.(A) = /2/3A7" for A =3'/°, where
E. = /2/3*3 = 0.680, falling squarely within the range
of the experimental values 0.678—0.686 in the absence of
prestretch [5]. Thus, in the absence of dead loads, our
analysis is close to the Hessian approach, which gives an
estimate of £, = 0.687 [4].

Things change drastically when the film is prestretched
by applying dead loads prior to the voltage; then

FIG. 5. Pull-in instability in equibiaxially strained films pre-
stretched by dead loads. A comparison of experimental (dots) [7]
and theoretical (solid curves) critical voltages (in kilovolts).
Curves a, b, ¢, and d correspond to dead loads weighing 20,
25.5, 31, and 35.6 g, respectively: they describe homogeneous
paths until failure and are modeled by the solid curves. Their
intersection with the V. curve [given by Eq. (2)] corresponds to
catastrophic thinning (see the Supplemental Material [15] for
details on the calibration). The Hessian approach can predict only
one failure, denoted by X.

experiments show that giant areal gains can be achieved
[7,31,32]. Theoretical models based on the Hessian
approach fail to predict the actual gain, particularly for
higher dead loads. That is because the Hessian criterion
detects the points where the voltage-stretch curve ceases to
be increasing [4]. However, elastomers stiffen greatly at
large strains, and sufficiently high dead loads will make the
voltage-stretch curve monotonically increasing: this
phenomenon can lead to the erroneous conclusion that
electromechanical instability can be eliminated by high
prestretch, in contrast to experiments [7,33]. Consider, for
example, experiments on voltage-actuated silicone disks,
prestretched by dead loads, as carefully conducted and
described in Ref. [7]. Based on the experimental results
reported for the purely mechanical behavior of VHB™
silicone, we obtain the homogeneous loading curves for
different values of dead loads using a strain-stiffening
model [15]. For lower prestretches (Fig. 5), the voltage-
stretch curves have a peak, corresponding to the failure
resulting from the Hessian condition, but this peak dis-
appears for higher values of prestretch, and the Hessian
condition is no longer violated. Nonetheless, the exper-
imental plots have a maximum, clearly corresponding to
failure; see the last upper experimental dots in Fig. 5.

Our theory predicts failure whenever the homogeneous
loading curves intersect the critical threshold curve
described by formula (2). It gives a clear correspondence
between the experimental and theoretical thresholds, as
seen in Fig. 5.

We may thus conclude that the simple formula (2),
coupled to that based on snap-through (Hessian) modeling
[4,34], provides a complete picture of the electric break-
down experienced by unconstrained and one-side con-
strained voltage-actuated thin dielectrics; see the summary
in Table 1.

Our theory is based on energy minimization arguments
[14]. Stable equilibrium configurations minimize the elec-
troelastic free energy ¥ = U — QV/2 — W, where U is the
elastic energy, Q the total charge on the electrodes, V the
voltage, and }V the mechanical work [15], while surface
energy terms are negligible [8]. When the membrane is thin
and curvature effects are neglected [35], the electric field in
the film can be approximated as V/(hi3), where 43 is the
thickness stretch. With these assumptions, the total free
energy depends only on the deformation.

Thinness of the dielectric film leads to a Taylor expan-
sion of W in powers of /. Truncating o(h?) terms gives the
minimal tools for detecting the onset of localization
instabilities (higher-order terms are required for postcritical
analysis, which is beyond the scope of this work). Denote
by S the constrained (lower) surface for creasing, and
the midsurface for pull-in. Then ¥ = f swda, where the
surface energy density y is expanded as

w(4i. Va3) = ho(4;) + P lay (4)43, + a2(4:)43,). (3)

The stretches A; are functions of the planar coordinates
(x1, x2), while the gradient VA3 = (151, 43,) accounts for
deformation inhomogeneities.

078001-3



PRL 118, 078001 (2017)

PHYSICAL REVIEW LETTERS

week ending
17 FEBRUARY 2017

TABLE I. Experiments vs previous and present theories.
Creasing Pull-in
Prestretch (dead load) 1 1-25 256 1 20g) (2552 (@Blg @659
E, [or V, (kV)] experiments 0.85 v/ v 0.678-0.686 v v v v
(6] (8] [8] (5] (71 (71 (71 (71
E. [or V. (kV)] other theories 1.03 X X 0.687 v X X X
FEM [6] dim" [8] X H" [4] H [7] X X X
E. [or V., (kV)] our theory 0.816 Fig. 4 Fig. 4 0.680 Fig. 5 Fig.5 Fig.5 Fig. 5

*For this stretch range only, a qualitative behavior was obtained in Ref. [8] through dimensional analysis.

®Hessian method.

When higher-order terms are not considered, only homo-
geneous configurations can be described. They are charac-
terized by the Euler-Lagrange equations d¢/01; = 0 and
their stability is assessed through the convexity of ¢, which
is the so-called Hessian approach [4,34]. When applied to
pull-in, this approach cannot predict instability, neither for
nonequibiaxial states of deformation nor for large deforma-
tions [7]. When applied to creasing (for undeformed or
prestretched films), it predicts stability for any voltage,
which is clearly contradicted by the experiments.

These shortcomings are addressed by considering the
whole energy (3), which imposes more stringent requirements
for the existence of minimizers. Indeed, they exist provided
that y is convex in V3, meaning that the functions a; and a,
must both be positive. This is the case as long as the electric
field is less than the critical threshold E.. defined by (2) [15].

Above E_, the total free energy becomes concave in V1,
and no energy minimizers exist (be they homogeneous or
belonging to a wide class of nonhomogeneous ones).
Immediately above E., inhomogeneous failure precursors
become possible: as soon as they appear, they are ener-
getically more favorable than the homogeneous state since
they lower the total free energy, albeit without finding a
minimum (Fig. 6): this explains the catastrophic nature of
localized thinning. Experiments on one-side constrained
films show that, when the film is not prestretched, locali-
zation mainly takes place in circular spots, whereas, when
the film is prestretched in one direction prior to bonding to
the rigid substrate, the resulting thinning localizations align
in the direction of higher prestretch [8]; see Figs. 2 and 3.
Both findings are easily covered by our theory.

Indeed, linearizing the Euler-Lagrange equation based
on Eq. (3), we find that failure precursors of the type
A3(x1,x7) = A5 + w(xy, xp), with A being a constant and w
small, solve [15]

(4)

where a;, a,, and I" are functions of the underlying stretch
and the electric field. For almost incompressible materials,
I is always positive, whereas, as we have seen, a; and a,
become negative above the critical voltage defined by
Eq. (2). For undeformed or equibiaxially stretched layers,
a; = a,, and they become negative together for £ > E,,

(ZIW’“ + (ZQW,22 —TIw= 0,

meaning that polar symmetric solutions of the Bessel type
become possible; see Fig. 2. When the film is prestretched
with 4; > 1,, for example, the first coefficient that becomes
negative is a,, leading to sinusoidal solutions in the
direction of least stretch; see Fig. 3.

With this Letter, we improved the current understanding
of the catastrophic nature of electroelastic instabilities in
thin films. This unsolved problem goes back as early as
1880, when Rontgen [33] stretched natural rubber using
sprayed-on electric charges. In 1955, Stark and Garton [36]
detected a previously unrecognized form of breakdown due
to the mechanical deformation of electrically irradiated thin
films of cross-linked polythane. The first experimental

0.99

o

FIG. 6. Electroelastic free energy y/u for a one-side constrained
film without prestretch (4; = 4, = 1). The film is a slightly
compressible neo-Hookean material of thickness /7 = 0.01L,
where L is a typical lateral length scale and x/p = 1000, with
x being the initial bulk modulus [see Eqs. (7) and (8) in the
Supplemental Material [15]]. For E < E, = 0.816, the homo-
geneous solution with A3 = 1 is the unique energy minimizer; see
the upper surface. Above E, the energy is still convex in 43, but it
becomes nonconvex in VA;; see the lower surface. Failure
precursors are then energetically favored, but no energy minimiz-
ers exist. In the shaded Hessian plane (at ||VAs|| = 0), Hessian
stability takes place; there, the energy is convex in A3 and the
failure threshold cannot be captured.
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evidence that dielectric breakdown is due to strong thinning
localization was by Blok and LeGrand 1 in 1969, who
provided clear optical evidence (Fig. 1) in voltage-
controlled polymer films. They speculated that it is exper-
imentally impossible to deform the entire area of the
dielectric without using an immense stress, thus inferring
the energetic convenience of localizing deformations above
a critical voltage. Here, we further their intuition and find a
completely new paradigm for the analysis of electro-
mechanical instabilities in dielectric films, both one-side
constrained and unconstrained. A great majority of tech-
nological applications based on dielectric elastomers are
dependent on whether wrinkling may or may not be
anticipated by electromechanical instability, e.g., tunable
adhesion, open-channel microfluidics, etc. [37,38], and on-
demand fluorescent patterning [39]. By redefining and
furthering the concept of the electromechanical instability
of dielectric films, this Letter implies that new experimental
campaigns and new analytical studies based on formula (2)
are now required to generate a finer physical picture of the
catastrophic thinning phenomenon.
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