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A method to determine surface recombination velocities at collecting contacts in interface-limited
organic semiconductor devices, based on the extraction of injected carrier reservoirs in a single-carrier
sandwich-type structure, is presented. The analytical framework is derived and verified with drift-diffusion
simulations. The method is demonstrated on solution-processed organic semiconductor devices with
hole-blocking TiO2=organic and SiO2=organic interfaces, relevant for solar cell and transistor applications,
respectively.
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Contacts play a crucial part in thin-film semiconductor
devices, such as those based on organic and perovskite
semiconductors. Most electronic devices require at least one
contact that is either charge collecting or blocking. For
instance, in organic field effect transistors, the source and
drain constitute collecting contacts, while the gate electrode,
covered with an insulating dielectric, needs to be blocking
[1]. Many applications also require selective contacts that
are able to efficiently either inject or collect one type of
charge carrier while simultaneously blocking the other type.
This is of particular importance in organic and perovskite
solar cells, where contacts that are able to efficiently collect
majority carriers, while simultaneously blocking minority
carriers, are desired [2–9]. However, a comprehensive
understanding of the processes taking place at the contacts
in organic thin-film semiconductor devices is still lacking.
The current of carriers flowing out from the semi-

conductor (to the electrode) at a collecting contact is
generally described in terms of an effective surface recom-
bination current [10–13]:

JR ¼ qSR½nc − n0�; ð1Þ

where SR is the associated surface recombination velocity,
nc is the carrier density at the surface and n0 is the
corresponding equilibrium density, and q is the elementary
charge. The surface recombination velocity is a character-
istic for the quality of the surface and can be expressed as
SR ¼ σRvRNs, where σR is an effective capture cross
section, vR is the carrier emission velocity at the contact,
and Ns is the surface density of recombination centers
[3,10]. At an ideal semiconductor-metal contact, acting as
an infinite recombination center (σRNs → 1), the upper
limit of SR is typically on the order of 106 cm=s at
temperature T ¼ 300 K in accordance with the thermionic
emission theory [4,10]. A schematic picture of surface
recombination for holes at a contact is shown in Fig. 1(a).

In general, if SR is larger than the effective transport
velocity vD ∼ μjFj of carriers within the semiconductor
layer (SR ≫ vD), the carrier collection is limited by the bulk
(diffusion limited) [9,14–16]. In this case, the contact
virtually acts as a perfect collector (SR → ∞). Here, μ is
the carrier mobility and F the electric field. If SR < vD, on
the other hand, the charge collection is controlled by kinetics
at the contact as the carrier transport becomes limited by
the interface [9,10,16,17]. The surface recombination at
a contact that is blocking from the viewpoint of carrier
collection is by definition also interface limited (SR ≪ vD).
However, the condition SR ≪ vD alone does not necessarily
fulfill the requirements of a blocking contact. Ideally, a
blocking contact with SR ¼ 0 is achieved by inserting
an interlayer that prevents all carriers from leaving the
device at the contact (σRNs → 0). In practice, however,

FIG. 1. (a) Schematic picture of surface recombination at a
semiconductor-electrode contact for holes being collected at a
metal electrode. In (b) and (c), a schematic picture of the CELIV
technique is shown. A linear voltage pulse uðtÞ is applied to
extract charge carriers at the dc voltage V. From the correspond-
ing extraction current transient jðtÞ (corrected for the steady-state
current), the extracted charge is obtained from Qextr ¼R textr
0 ½jðtÞ − j0�dt, where j0¼ðεε0=dÞðdu=dtÞ¼ðεε0umax=dtpulseÞ.
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recombination centers (gap states) are likely to always be
presentwithin the interface layer (σRNs ≠ 0) [2,3,10,13,18],
effectively leading to nonzero SR [see Fig. 1(a)]. The surface
recombination velocity is thus a key parameter in under-
standing the processes taking place at the contacts.
In this Letter, a method to determine the surface

recombination velocity at limiting contacts in organic
semiconductor devices is proposed. The method is based
on the analytical derivation of the relationship between the
net charge, injected into the semiconductor layer in a
single-carrier device structure, and the surface recombina-
tion velocity at the collecting contact. By determining the
injected charge by charge extraction measurements, the
surface recombination velocity is subsequently obtained.
The method can be used to investigate properties of
(nominally) blocking buffer layers, such as selective
electrode interlayers and gate dielectrics, in organic semi-
conductor devices.
The device under consideration is hole-only consisting of

a semiconductor layer, sandwiched between a hole-injecting
contact at the anode (x ¼ 0) and a hole-collecting contact
with a finite SR for holes at the cathode (x ¼ d), where d is
the thickness of the semiconductor layer. By applying a dc
voltage V > Vbi, whereVbi is the (effective) built-in voltage
of the device, holes are readily injected into the semi-
conductor layer from the injecting anode contact. The net
injected charge accumulating in the layer is given by
ΔQ ¼ q

R
d
0 ΔpðxÞdx, where ΔpðxÞ ¼ pðxÞ − p0ðxÞ is the

difference between the hole density at the applied voltage V
and the equilibrium hole density. The surface recombination
current at the collecting cathode contact is given by
Jpjcat ¼ qSRΔpðdÞ, where pðdÞ is the hole density at the
cathode interface. The impact of SR for holes at the cathode
is simulated in Fig. 2. For the simulations, a previously
developed drift-diffusion-Poisson model is used [17].
Typical energy level diagrams for the case SR < vD are
shown in Fig. 2(a). In Fig. 2(b), the simulated ΔQ as a
function of V at different surface recombination velocities is

shown, as depicted by the symbols. At high SR, in this case
larger than 0.10 cm=s, ΔQ is independent of SR. This
corresponds to the bulk-limited regime SR ≫ vD, when
ΔQ is independent of the kinetics at the cathode inter-
face. Note that, close to flat-band conditions (V ¼ Vbi),
vD ≈ μkT=qd corresponding to 0.13 cm=s in this case. At
smaller SR, however, a drastic increase in ΔQ with decreas-
ing SR and increasing V is obtained.
The behavior in the SR ≪ vD limit can be understood as

follows. For a planar hole-only device, the steady-state
continuity equation requires that dJD=dx ¼ 0, where JD is
the current density. Hence, the size of the accumulated
reservoir of bias-induced holes is controlled by the current
density flowing through the device JDðVÞ ¼ Jpjcat ¼
qSRΔpðdÞ, being dependent on both SR and V. As more
holes are being transported to the cathode interface than
holes leaving the device at the cathode, the injected holes
will accumulate at the cathode interface. Under these
circumstances (SR ≪ vD), the quasi-Fermi-level EFp is flat
in the active layer at quasiequilibrium conditions [9,10,16].
The hole density is given by pðxÞ ¼ N exp ð½EvðxÞ−
EFp�=kTÞ ¼ pðdÞ exp ð½EvðxÞ − EvðdÞ�=kTÞ, where N is
the density of transport states, k is the Boltzmann constant,
and EvðxÞ is the (effective) hole transport level. Upon
solving the Poisson equation,

1

q
d2EvðxÞ
dx2

¼ qpðxÞ
εε0

; ð2Þ

where εε0 is the permittivity, the injected hole density
near the cathode interface can be expressed as
pðxÞ ¼ pðdÞ=ð1þ ½d − x�=λ ffiffiffi

2
p Þ2, with the Debye length

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εε0kT=q2pðdÞ

p
[10,19,20]. In the derivation of pðxÞ,

it was assumed that a minimum for EvðxÞ exists within the
active layer at a distance≫λ from the cathode interface. The
injected charge, accumulating at the cathode interface,
becomes

FIG. 2. (a) Simulated energy level diagrams at V ¼ 0 (upper) and V > Vbi (lower) are shown for the case SR < vD at the cathode
(x ¼ d). In (b), the simulated ΔQ as a function of applied voltage V for varying SR is indicated by symbols. The analytical
approximation Eq. (3) is depicted by the corresponding solid lines. The current density JDðVÞ is obtained from the simulated JV curve
(not shown). The dashed line corresponds to ΔQ ¼ 3

2
CU. In (c), the normalized Qnorm=J

1=2
norm as a function of SR=ðμkT=qdÞ is shown,

whereQnorm ≡ ΔQ=CU, Jnorm ≡ JD=JSCLC, and μkT=qd ≈ 0.13 cm=s. In the simulations we assume Vbi ¼ 0.5 V, d ¼ 200 nm, ε ¼ 3,
T ¼ 300 K, μ ¼ 10−4 cm2=V s, and an injection barrier of 0.20 eV at the anode.
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ΔQ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εε0kTpðdÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εε0kT
qSR

JDðVÞ
s

; ð3Þ

for pðdÞ ¼ JDðVÞ=qSR ≫ p0ðdÞ. Indeed, upon comparing
Eq. (3) (solid lines) with the simulated ΔQ (symbols) in
Fig. 2(b), an excellent agreement is found for V > Vbi.
In Fig. 2(c), the ratio ΔQ=J1=2D is simulated as a function

of SR=ðμkT=qdÞ. Note that Eq. (3) can be reexpressed
as ΔQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJSCLC=JDÞ
p ¼ 1.5CU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðμkT=qSRdÞ
p

, where C ¼
ϵϵ0=d is the geometric capacitance of the semiconductor,
JSCLC ¼ 9εε0μU2=8d3 is the space-charge-limited current
density (see Refs. [15,21]), andU is the (effective) potential
difference across the layer. Comparing the analytical
prediction with the simulations, we see that an excellent
agreement is obtained when SR < μkT=qd. On the other
hand, as SR > μkT=qd, the charge transport is no longer
limited by the kinetics at the cathode. In this case, the
injected charge instead approaches ΔQ ¼ 3

2
CU as

JD → JSCLC, as expected from the theory of bulk-limited
charge transport [21].
Experimentally, the injected charge at V can be quanti-

fied by applying a voltage pulse uðtÞ of reversed polarity
(relative to V) and measuring the induced extraction current
transient jðtÞ. In this work, we use charge extraction by a
linearly increasing voltage (CELIV) pulse to extract the
injected charge [22–24]; a schematic picture is shown in
Figs. 1(b) and 1(c). For a hole-only device, the extracted
charge can generally be expressed as [25]

Qextr ≡
Ztextr
0

½jðtÞ − j0 − JD�dt ¼ − q
d

Zd
0

Zd
x

Δpdx0dx; ð4Þ

where j0 ¼ Cðdu=dtÞ and textr is the time at which the
injected bias-induced carriers have been extracted. In our
case of an injected surface charge of holes at the cathode,
we find jQextrj ≈ ΔQ, provided that λ ≪ d. As a result, the
extracted charge at V > Vbi can be used to determine the
surface recombination velocity at the contact via

SR ¼ 2εε0kT
qQ2

extr
JDðVÞ; ð5Þ

where JDðVÞ is the steady-state current density at V > Vbi,
obtained from the dark current-voltage characteristics. The
determination of SR is limited to the case SR < vD.
If SR ≫ vD, however, Eq. (5) instead gives an effective
(bulk-limited) transport velocity SeffR ≈ μkT=qd at the con-
tact, corresponding to a lower limit estimate of SR. In the
following, the method is demonstrated on solution-
processed organic semiconductor devices, employing
TiO2 and SiO2 as electrode buffer layers (for experimental
details, see Supplemental Material [26]).
We first demonstrate the method on an inverted organic

solar cell device with TiO2 as the cathode interlayer. TiO2

has been commonly used as an electron-selective (hole-
blocking) layer in organic, dye-sensitized, and perovskite
solar cells [2,7,30]. The organic semiconductor layer
consists of P3HT:PCBM, widely studied in organic solar
cell research. The hole-only device structure is ITO=
TiO2ð7 nmÞ=P3HT∶PCBM=Cu, where Cu is used as the
hole-injecting anode. By applying a positive dc bias, holes
are accumulated at the TiO2=P3HT∶PCBM interface.
These charges are subsequently extracted using CELIV.
In Figs. 3(a) and 3(b), the extracted charge and steady-state
current density are shown at different dc voltages V,
respectively. The corresponding surface recombination
velocities SR (symbols), as calculated using Eq. (5), are
presented in Fig. 3(c). The analysis yields a surface
recombination velocity of SR ≈ 6 × 10−6 cm=s for holes
at the TiO2=P3HT∶PCBM interface, consistent with find-
ings in Ref. [24]. This is to be compared to vD ∼ μkT=qd
estimated to be 0.06 cm=s. Introducing the hole-blocking
TiO2 layer effectively reduces the hole transport velocity by
a factor of 104 at the cathode contact. However, a small
number of holes are still able to leak through the TiO2 layer,
suggesting that recombination (with electrons in the cath-
ode layer) is taking place at the TiO2=organic contact
(cf. Fig. 1).
In general, there are also parasitic conductive pathways

present for the current to circumvent the device (or the
blocking layer), giving rise to additional leakage currents.

FIG. 3. In (a) and (b), the extracted charge Qextr and
steady-state current density J, respectively, are shown for
TiO2=P3HT∶PCBM (circles) and SiO2=P3HT (squares) inter-
faces at different V. In (c), the corresponding SR for holes is
shown, as obtained by Eq. (5) (symbols). The open and solid
squares indicate SiO2=P3HT data that have been uncorrected
(Rsh ¼ ∞) and corrected (Rsh ≈ 1050 Ωm2) for the shunt resis-
tance, respectively. The dashed lines in (a) and (c) correspond to
SR ¼ 5.8 × 10−6 cm=s and SR ¼ 4.5 × 10−9 cm=s for TiO2=
P3HT∶PCBM and SiO2=P3HT, respectively. In (d), the extracted
charge for SiO2=P3HT [from (a)] is shown on the linear scale
(symbols); the corresponding dJ=dV [mS=m2] as a function of
dQ2

extr=dV [ðC=m2Þ2=MV] are shown in the inset.
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These leakage currents are typically described in terms of a
finite shunt resistance. Taking this effect into account, the
total measured current density is given by

JðVÞ ¼ JDðVÞ þ V=Rsh; ð6Þ
where Rsh is the effective shunt resistance in units of
Ω ·m2. Neglecting the presence of a finite shunt resistance
leads to an overestimation of JDðVÞ and thereby also SR.
Based on Eq. (6), the effect of shunts can be taken into
account by differentiating with respect to V and making use
of Eq. (5); one finds

dJðVÞ
dV

¼ 1

Rsh
þ qSR
2εε0kT

d½Q2
extr�

dV
; ð7Þ

assuming SR to be independent of V. By plotting
dJðVÞ=dV as a function of dQ2

extr=dV, the shunt resistance
is obtained from the intercept, while SR is obtained from the
slope. For the TiO2=P3HT∶PCBM device, the effect of
shunts was found to be insignificant.
In Fig. 3, we also included an organic semiconductor

device of P3HTwith a thin insulating SiO2 layer, typically
used as a gate dielectric in transistor applications [1], at the
cathode. The device structure is given by ITO=SiO2ð5 nmÞ=
P3HT=MoO3=Ag with MoO3=Ag as the hole-injecting
anode. The accumulated charge at the SiO2=P3HT interface
is found to be closely given by Qextr ¼ CiU [see Fig. 3(d)],
where Ci is the geometric capacitance of the SiO2 layer.
Because of the low current densities obtained in this case,
shunts will dominate at smaller voltages. Utilizing Eq. (7),
we obtain Rsh ≈ 1050 Ω ·m2. The effect of shunts on the
extracted SR is demonstrated in Fig. 3(c). After correcting
the current for the shunt, we find SR ≈ 5 × 10−9 cm=s for
holes at the SiO2=P3HT interface. It should be noted that if
shunts are not accounted for, Eq. (5) instead gives an upper
limit estimate of SR.
The above analysis based on Eq. (3) assumes the

nondegenerate limit to be valid. At very high carrier
concentrations (low SR and high V), however, density of
states (DOS) filling effects become significant [28]. Under
these conditions, the shape of the DOS can be taken into
account via a correction factor η, and we obtain SR ¼ ηS0R
(see Supplemental Material [26]), where S0R corresponds to
the nondegenerate case given by Eq. (5). In the case of a
Gaussian distribution of states [∝ expð−E2=2σ2Þ], η is well
approximated by η ≈ 1=erfð½− ln c�2=3kT=σÞ for c ≤ 0.1,
where c ¼ pðdÞ=N is the DOS occupation and σ is the
energetic disorder parameter (see Supplemental Material
[26]). Concomitantly, with σ ¼ 69 meV for P3HT [29], η is
close to 1.5 for c ¼ 0.1 (at 300 K). At smaller c, the
nondegenerate limit is eventually approached as η → 1.
In conclusion, a technique to determine (effective) sur-

face recombination velocities at contacts in thin-film
devices is presented. The method is based on using a
single-carrier device structure with an injecting contact to

inject and accumulate a carrier reservoir at the opposite
collecting contact interface. From the size of the injected
charge reservoir, determined by charge extraction measure-
ments, the surface recombination velocity for carriers
accumulating at the collecting contact can be obtained.
The analytical framework behind the method is derived and
confirmed by numerical simulations. Furthermore, the
method is demonstrated on hole-only organic thin-film
devices with different hole-blocking buffer layers.
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